修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Internal electromagnetic waves, energy trapping, and energy release in simple time-domain simulations of single particle scattering.

    摘要: During the decay phase of the interaction of a femto-second Gaussian pulse with a single spherical particle, the presence of quasi-periodic short oscillatory bursts of electromagnetic energy at points in the near field outside the particle have been observed in three-dimensional simulations. Analogous behavior can be very easy produced and understood in simple one-dimensional scattering calculations. In two dimensions the situation immediately becomes more complicated and interesting. Here we discuss results from two-dimensional pseudo-spectral time-domain simulations of scattering from circular, elliptical, and hexagonal particles with the real index of refraction m=1.3. Our focus is on how energy initially trapped within a particle after interaction with an incident Gaussian pulse is released over time, and we show two kinds of events that can result in 'bursts' of energy release from the particles: (i) the coalescence of counter-propagating wave-packet-like electromagnetic field structures that have maximum amplitude near the surface of the particle, and (ii) encounters of individual packets with surface regions of high curvature. The coalescence events in the circular case show the dynamical origin of a two-dimensional form of 'photonic nanojet.' The two-dimensional simulations make clear the reason for quasi-periodic intermittent bursts at fixed near-field points outside the particle. Examination of field evolution shows that distinct near-surface internal field maxima, ostensibly the 'source' of the emission bursts, are in fact inter-connected by caustic-like internal field structures that extend throughout the particle and have complex time evolution. The revealed intricacy of these connections suggests that understanding the origins of pulsed emissions in three dimensions, even for simple particle geometries, may be quite challenging.

    关键词: caustic evolution,photonic nanojet,single particle scattering,femtosecond Gaussian pulses,internal electromagnetic waves

    更新于2025-09-19 17:15:36

  • Nonlinear Fiber Optics || Group-velocity dispersion

    摘要: The preceding chapter showed how the combined effects of group-velocity dispersion (GVD) and self-phase modulation (SPM) on optical pulses propagating inside a fiber can be studied by solving a pulse-propagation equation. Before considering the general case, it is instructive to study the effects of GVD alone. This chapter considers the pulse-propagation problem by treating fibers as a linear optical medium. In Section 3.1 we discuss the conditions under which the GVD effects dominate over the nonlinear effects by introducing two length scales associated with GVD and SPM. Dispersion-induced broadening of optical pulses is considered in Section 3.2 for several specific pulse shapes, including Gaussian and 'sech' pulses. The effects of initial frequency chirping are also discussed in this section. Section 3.3 is devoted to the effects of third-order dispersion on pulse broadening. An analytic theory capable of predicting dispersive broadening for pulses of arbitrary shapes is also given in this section. We discuss in Section 3.4 how the GVD can limit the performance of optical communication systems and how the technique of dispersion management can be used to combat such limitations.

    关键词: dispersion management,dispersion-induced broadening,sech pulses,Group-velocity dispersion,GVD,optical pulses,third-order dispersion,SPM,Gaussian pulses,self-phase modulation,fiber propagation,frequency chirping

    更新于2025-09-12 10:27:22