- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: A versatile electrode material for stable supercapacitor and sensing applications
摘要: Herein, we report cuprous oxide nanocubes decorated reduced graphene oxide (CNC-rGO) immersed in chitosan matrix as a versatile and enhanced electrochemically active electrode material for both supercapacitor and hydrogen peroxide (H2O2) sensor applications. The CNC-rGO was synthesized by one-pot scalable chemical precipitation method. The morphology and crystal structure of as-synthesized hybrid material was characterized by field emission scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The CNC-rGO hybrid material immersed in the chitosan matrix was used as an enhanced electrochemically active electrode material for supercapacitor and hydrogen peroxide (H2O2) sensor. The fabricated CNC-rGO hybrid in chitosan matrix as an electrode showed remarkable charge storage capacity of 772.3 F g-1 (12.87 mA h g-1) at a current density of 0.2 A g-1 with high cyclic stability over 2000 charge-discharge cycles. Similarly, H2O2 sensing performance of the same electrode exhibits very high sensitivity of 0.33 A M-1 cm-2 within a linear range of detection of 20-160 μM. Thus, the synthesized CNC-rGO hybrid material composed of numerous cuprous nanocubes on rGO nanosheets with large active sites showed enhanced electrochemical activity beneficial towards the supercapacitor and H2O2 sensor applications.
关键词: copper oxide nanocubes,chitosan,supercapacitor,H2O2 sensor,reduced graphene oxide
更新于2025-09-23 15:23:52
-
Synthesis and Characterization of Graphene Oxide/Zinc Oxide (GO/ZnO) Nanocomposite and Its Utilization for Photocatalytic Degradation of Basic Fuchsin Dye
摘要: In this study, graphene oxide/zinc oxide (GO/ZnO) nanocomposite was prepared by the decoration of expanded and chemically oxidized graphite oxide nanosheets with zinc oxide (ZnO) nanoparticles synthesized via two-step sol-gel deposition method and used as an effective photocatalyst for degradation of basic fuchsin (BF) dye. Structural properties of GO/ZnO nanocomposite were characterized with X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) methods, and Brunauer-Emmett-Teller (BET) surface area measurement. It was found that the GO/ZnO nanocomposite formed a two-dimensional (2D) structure having a composition of 0.54GO/0.46ZnO (w/w) and average ZnO particle size of 25–30 nm. The band gap of ZnO nanoparticles onto GO nanosheets was found to be 3.25 eV while that of bulk ZnO nanoparticles was determined as 3.70 eV. Photocatalytic degradation works were performed into a UV-chamber by following the concentration of BF dye. Degradation reaction was modeled with the Langmuir-Hinshelwood pseudo first-order kinetic model. GO/ZnO nanocomposite increased the apparent reaction rate constant (k) about three times compared to bulk ZnO nanoparticles under UV light.
关键词: Nanocomposite,Photocatalyst,Graphene oxide,Zinc oxide
更新于2025-09-23 15:23:52
-
Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures
摘要: A label-free electrochemical immunosensor for quantitative detection of human epididymis specific protein 4 antigen (HE4 Ag) was developed by a novel multi-amplification signal system. The multi-amplification signal system was formed by loading bimetallic Au@Pd holothurian-shaped nanoparticles (Au@Pd HSs) on titanium oxide nanoclusters functionalized nitrogen-doped reduced graphene oxide (TiO2-NGO). The Au@Pd HSs were obtained via seed-mediated approach with in-situ grown palladium nanoarms on gold nanorods (Au NRs) surfaces, which possessed good electrocatalysis for hydrogen peroxide (H2O2) reduction and excellent biocompatibility. The TiO2-NGO with the high catalytic activity and large specific surface area was synthesized by hydrothermal method. Using H2O2 as an electrochemically active substrate, the prepared label-free electrochemical immunosensor based on the TiO2-NGO/Au@Pd HSs hetero-nanostructures as the signal amplification platform exhibited excellent selectivity, reproducibility and stability for the detection of HE4 Ag. Meanwhile, the linear range from 40 fM to 60 nM with the detection limit of 13.33 fM (S/N = 3) was obtained, indicating the immunosensor offers a promising method for clinical detection of HE4 Ag.
关键词: Au@Pd nanoparticles,Titanium oxide,Label-free electrochemical immunosensor,Nitrogen-doped reduced graphene oxide,Human epididymis specific protein 4
更新于2025-09-23 15:23:52
-
Novel Green Synthesis of Graphene Layers using Zante Currants and Graphene Oxide
摘要: The present work shows a facile route for the preparation of graphene layers and for the first time Zante currants extract used for the effective deoxygenation of graphene oxide has been reported. Zante currants (ZC) extract reduce effectively GO into few layered structures of graphene (FLG). The morphology of few layers graphene and graphene oxide (GO) were investigated by SEM and TEM. Reduction effect on graphene oxide confirm by other technique like Raman, FTIR, XRD and UV spectrophotometry. This procedure keep away the use of hazardous chemicals, thus providing a new hope for large scale production of chemically reduced graphene.
关键词: Graphene oxide (GO),Few layers graphene (FLG),Zante currants (ZC),Green synthesis
更新于2025-09-23 15:23:52
-
Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy
摘要: Ultrasound molecular imaging as a promising strategy, which involved the use of molecularly targeted contrast agents, combined the advantages of contrast-enhanced ultrasound with the photothermal effect of reduced graphene oxide (rGO). Methods and results: The heparin sulfate proteoglycan glypican-3 (GPC3) is a potential molecular target for hepatocellular carcinoma (HCC). In this study, we covalently linked biotinylated GPC3 antibody to PEGylated nano-rGO to obtain GPC3-modified rGO-PEG (rGO-GPC3), and then combined rGO-GPC3 with avidinylated nanobubbles (NBs) using biotin-avidin system to prepare NBs-GPC3-rGO with photothermal effect and dispersibility, solubility in physiological environment. The average size of NBs-GPC3-rGO complex was 700.4±52.9 nm due to the polymerization of biotin-avidin system. Scanning electron microscope (SEM) showed NBs-GPC3-rGO attached to human hepatocellular carcinoma HepG2 cell. The ultrasound-targeted nanobubble destruction (UTND) technology make use of the physical energy of ultrasound exposure for the improvement of rGO delivery. Compared with other control groups, the highest nanobubble destruction efficiency of NBs-GPC3-rGO was attributed to the dissection effect of rGO on UTND. This is a positive feedback effect that leads to an increase in the concentration of rGO around the HepG2 cell. So NBs-GPC3-rGO using UTND and near-infrared (NIR) irradiation resulted in cell viability within 24 h, 48 h, 72 h lower than other treatment groups. Conclusion: This work established NBs-GPC3-rGO as an ultrasonic photothermal agent due to its suitable size, imaging capability, photothermal efficiency for visual photothermal therapy in vitro.
关键词: ultrasound-targeted nanobubble destruction,photothermal therapy,glypican-3,reduced graphene oxide,HepG2 cell
更新于2025-09-23 15:23:52
-
Wafer-scale Fabrication of Nitrogen-doped Reduced Graphene Oxide with Enhanced Quaternary-N for High-Performance Photodetection
摘要: We demonstrated a simple and scalable fabrication route of nitrogen-doped reduced graphene oxide (N-rGO) photodetector on 8-inch wafer-scale. The N-rGO was prepared through in-situ plasma-treatment in an acetylene-ammonia atmosphere to achieve n-type semiconductor with substantial formation of quaternary-N substituted into the graphene lattice. The morphology, structural, chemical composition and electrical properties of the N-rGO was carefully characterized and being used for the device fabrication. The N-rGO devices were fabricated in a simple metal-semiconductor-metal (MSM) structure with unconventional metal-on-bottom configuration to promote high-performance photodetection. The N-rGO devices exhibited enhanced photoresponsivity as high as 0.68 A W?1 at 1.0 V, which is about two orders of magnitude higher compared to a pristine graphene and wide-band photo-induced response from visible to near-infrared (NIR) region with increasing sensitivity in the order of 785 nm, 632.8 nm and 473 nm excitation wavelengths. We also further demonstrated a symmetric characteristic of photo-induced response to any position of local laser excitation with respect to the electrodes. The excellent features of wafer-scale N-rGO devices suggest a promising route to merge the current silicon technology and two-dimensional materials for future optoelectronic devices.
关键词: photodetector,plasma treatment,quaternary-N,wafer-scale fabrication,Nitrogen-doped reduced graphene oxide
更新于2025-09-23 15:23:52
-
Growth and Self-Assembly of Silicon–Silicon Carbide Nanoparticles into Hybrid Worm-Like Nanostructures at the Silicon Wafer Surface
摘要: This work describes the growth of silicon–silicon carbide nanoparticles (Si–SiC) and their self-assembly into worm-like 1D hybrid nanostructures at the interface of graphene oxide/silicon wafer (GO/Si) under Ar atmosphere at 1000 °C. Depending on GO film thickness, spread silicon nanoparticles apparently develop on GO layers, or GO-embedded Si–SiC nanoparticles self-assembled into some-micrometers-long worm-like nanowires. It was found that the nanoarrays show that carbon–silicon-based nanowires (CSNW) are standing on the Si wafer. It was assumed that Si nanoparticles originated from melted Si at the Si wafer surface and GO-induced nucleation. Additionally, a mechanism for the formation of CSNW is proposed.
关键词: nanoparticles,thermal reduction,silicon carbide,graphene oxide,self-assembly,silicon,nanowires
更新于2025-09-23 15:23:52
-
Enhanced photocatalytic activity of TiO2/graphene by tailoring oxidation degrees of graphene oxide for gaseous mercury removal
摘要: We used a simple method of graphene oxide (GO) preparation with different oxidation levels, and control the properties of the TiO2 nanocrystals by tuning the content and oxidation degree of GO to enhance the photocatalytic performance. During the hydrothermal reaction, reduction of GO, formation of TiO2 and chemical bonds between TiO2 and reduced graphene oxide (RGO) was achieved simultaneously. Characterization results showed that TiO2 properties such as crystalline grain and particle size could be tailored by the amount of functional groups, and that crystallinity was also controlled by GO degrees of oxidation. TiO2/RGO photocatalysts showed great efficiency of mercury oxidation, which reached 83.7% and 43.6% under UV and LED light irradiation, respectively. The effects of crystalline grain size and surface chemical properties on Hg0 removal under LED and UV light irradiation were analyzed. In addition, the properties of the photocatalysts before and after UV illumination were investigated, finding that part of Ti-OH on TiO2 surface transformed to Ti-O-Ti. In a nutshell, this work could provide a new insight into enhancing activity of photocatalysts and understanding the photocatalytic mechanism.
关键词: TiO2,Photocatalysis,Chemical Bonds,Elemental Mercury,Reduced Graphene Oxide
更新于2025-09-23 15:23:52
-
Silver nanoparticles with reduced graphene oxide for surface-enhanced vibrational spectroscopy of DNA constituents
摘要: Composite of silver nanoparticles with reduced graphene oxide flakes is proposed for surface enhanced vibrational spectroscopy, particularly for detection of adenine and thymine as constituents of deoxyribonucleic acid. Composite was formed by original method implying simultaneous reduction of silver ions and graphene oxide by discharge plasma at the gas–liquid interface. Combination of nanosized silver with reduced graphene oxide provided greater enhancement of Raman light scattering and infrared light absorption in comparison with separately used components. Addition of the composite to water solutions of adenine and thymine allowed detection of these analytes at micromolar concentrations. Composite of nano-silver with reduced graphene oxide can be prospective for surface enhanced spectroscopy as an alternative to the expensive lithographically prepared noble metal substrates.
关键词: Adenine,Surface Enhanced InfraRed Absorption (SEIRA),Thymine,Reduced graphene oxide,Discharge plasma,Silver nanoparticles,Surface Enhanced Raman Scattering (SERS)
更新于2025-09-23 15:23:52
-
3D graphene/AgBr/Ag cascade aerogel for efficient photocatalytic disinfection
摘要: To design semiconductor-based photocatalysts with efficient charge carriers separation and transfer remains an enduring goal of artificial photosynthesis toward target redox reactions. Herein, we report a cascade monolith composite of ternary reduced graphene oxide aerogel/silver bromide/silver (RGA/AgBr/Ag) with efficient charge carriers separation, which exhibits much higher activity than bare AgBr toward photocatalytic bacteria inactivation. Mechanistic studies reveal that the reduced graphene oxide aerogel (RGA) scaffold and Ag nanoparticles serve as electron relay mediators to promote the charge carriers separation and transfer. In addition, the metallic Ag nanoparticles derived from the photoreduction of AgBr during the photocatalytic disinfection can further boost the separation of charge carriers. Control experiments demonstrate that the surface plasmon resonance (SPR)-excited hot electrons of Ag nanoparticles also contributes to enhancing the photoactivity of RGA/AgBr/Ag. As such, the synergy of multiple electron transfer behavior integratively leads to the boosted photocatalytic performance of such RGA/AgBr/Ag aerogel for bacteria inactivation with convenient recyclable operability.
关键词: charge transfer,aerogel,silver bromide,Ag nanoparticles,reduced graphene oxide
更新于2025-09-23 15:23:52