- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Dual Function of Graphene Oxide for Assisted Exfoliation of Black Phosphorus and Electron Shuttle in Promoting Visible and Near-Infrared Photocatalytic H2 Evolution
摘要: The search for suitable photocatalysts with broadband absorption in visible and near-infrared (NIR) region is recognized as one of the most challenging issues on solar energy utilization. Black phosphorous (BP) is demonstrated as an effective visible and NIR activated material in solar energy conversion. However, traditional liquid exfoliation yield is low and the rigid structure and insoluble properties of pristine BP hinder its high-yield of hybridization. Herein, a new and stable noble-metal-free ternary photocatalyst molybdenum disulfide (MoS2)-BP/graphene oxide (GO) was constructed for splitting water to H2, showing dual functions of GO in synthetic and photocatalytic processes. Under visible-NIR light irradiation, the H2 evolution rates of MoS2-BP/GO was enhanced to 3.47 μmol h-1. Rapid electron injection efficiency from excited BP to GO and to MoS2 was confirmed by femtosecond transient absorption spectroscopy. This study provides new insight into the design of nanomaterials, and offers a noble-metal-free protocol with noble-metal-free.
关键词: visible and NIR,hydrogen evolution,graphene oxide,black phosphorous,noble-metal-free
更新于2025-11-19 16:51:07
-
Self-generating CeVO4 as conductive channel within CeO2/CeVO4/V2O5 to induce Z-scheme-charge-transfer driven photocatalytic degradation coupled with hydrogen production
摘要: The construction of highly efficient Z-scheme photocatalytic system is regarded as a hot research topic in the fields of environmental remediation and renewable energy production. In this work, a novel Z-scheme CeO2/CeVO4/V2O5 photocatalyst is successfully prepared by using solid phase reaction method. The photocatalytic degradation of organic pollutant (Methylene Blue) with simultaneous hydrogen production is efficiently realized over the prepared Z-scheme CeO2/CeVO4/V2O5 photocatalysts under visible-light irradiation. The effects of treatment temperatures and treatment times of CeO2/V2O5 composite on the photocatalytic performance of Z-scheme CeO2/CeVO4/V2O5 photocatalyst are studied. The as-prepared Z-scheme CeO2/CeVO4/V2O5 (550-3) photocatalyst heat-treated at 550 °C for 3.0 h exhibits the highest photocatalytic performance. It can be ascribed to a moderate amount of CeVO4 nanoparticles generated between CeO2 and V2O5. The generated CeVO4 nanoparticles can be used as effective conductive channel to transfer the photo-generated carriers. At the same time, as redox reaction centers it can further accelerate the transfer of photo-generated electrons, effectively enhancing the separation efficiency of photo-generated electron and hole pairs. Furthermore, cyclic test demonstrates that the as-prepared Z-scheme CeO2/CeVO4/V2O5 (550-3) photocatalyst still maintains a high level of photocatalytic activity within five periods under the same conditions. Moreover, the related photocatalytic mechanism for degradation of organic pollutants with simultaneous hydrogen evolution over the Z-scheme CeO2/CeVO4/V2O5 (550-3) photocatalyst is proposed. Perhaps, this study affords a simple and novel method to design and develop next generation of highly efficient Z-scheme photocatalysts.
关键词: Conductive channel,Z-scheme CeO2/CeVO4/V2O5 photocatalyst,Solid phase reaction method,Simultaneous hydrogen evolution,Visible-light photocatalytic degradation
更新于2025-11-19 16:51:07
-
An anti-symmetric dual (ASD) Z-scheme photocatalytic system: (ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution
摘要: An anti-symmetric dual (ASD) Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst was prepared by isoelectric point and calcination methods. The photocatalytic activity is estimated via degradation of Acid Orange II as a target organic contaminant with simultaneous hydrogen evolution under simulated solar-light irradiation. The prepared ASD Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst has a high photocatalytic activity, which can be assigned to the enlarged photoresponse range, increased reduction surface and enhanced separation efficiency of photo-induced carriers. Furthermore, the cyclic experiment proves that the prepared ASD Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst still maintains a high photocatalytic activity within five repetitive cycles. Moreover, the mechanism on photocatalytic degradation of organic pollutants with simultaneous hydrogen evolution caused by ASD Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst is proposed. It is wished that this study could provide a promising pathway for effective degradation and rapid hydrogen production.
关键词: Simultaneous hydrogen evolution,Organic contaminants,Anti-symmetric dual (ASD) Z-scheme photocatalytic system,ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 composite,Up-conversion luminescence agent,Photocatalytic degradation
更新于2025-11-19 16:51:07
-
Black phosphorous sensitized TiO <sub/>2</sub> mesocrystals photocatalyst for hydrogen evolution with visible and near-infrared light irradiation
摘要: Wide absorption from ultraviolet (UV) to near-infrared (NIR) region and enhanced charge separation are two main requirements for promising semiconductor photocatalysts. Here, we studied visible-NIR driven photocatalytic hydrogen evolution over black phosphorus nanosheets/TiO2 mesocrystals loaded with Pt heterostructure (BP NS/ Pt (3 wt%)/TMC TMC). BP NS/Pt (3 wt%)/TMC can harvest photons from UV to NIR and simultaneously has enhanced charge separation to increase the generation of electrons for photocatalytic reduction of water. BP NS/Pt (3 wt%)/TMC exhibited photocatalytic H2 evolution rates of 1.9 and 0.41 μmol h-1 under visible (λ> 420 nm (420-1800 nm)) and NIR (λ> 780 nm (780-1800 nm) irradiation, respectively, compared with 0.3 and 0.10 μmol h-1 for BP NS/Pt (3 wt%)/P25. Moreover, a comparative study was made to examine the effect of thickness of BP NS on the photocatalytic H2 evolution. Femtosecond time-resolved diffused reflectance spectroscopy (fs-TRDRS) was integrated together with photoelectrochemical measurement to shed the light on the importance of charge transfer and separation, confirming that decreasing the thickness of BP NS enhances electron injection from BP NS to TMC to increase the photocatalytic activity.
关键词: hydrogen evolution,Black phosphorus,visible-light photocatalyst,charge carriers dynamics,TiO2 mesocrystals,femtosecond time-resolved diffuse reflectance
更新于2025-11-19 16:51:07
-
Thiourea-assisted coating of dispersed copper electrocatalysts on Si photocathodes for solar hydrogen production
摘要: Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage. It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large scale. Here, we developed a facile spin-coating and in-situ photoelectrochemical reduction method to prepare a dispersed Cu electrocatalyst on a Si photocathode, which improves the performance remarkably. We find that thiourea in the precursor solution for spin-coating plays an important role in obtaining dispersed Cu particles on the surface of a Si photoelectrode. With thiourea in the precursor, the Cu/Si photocathode shows higher performance than the one without thiourea. Moreover, the Cu/Si photocathode also indicates good stability after 16 h illumination.
关键词: In-situ photoelectrochemical reduction,Cu electrocatalyst,Thiourea,Hydrogen evolution reaction
更新于2025-11-19 16:51:07
-
NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution
摘要: Construction of semiconductor heterojunctions can effectively accelerate the separation of photo-induced charge carriers and thereby enhance photocatalytic activity. Here, NiSe was used as an effective co-catalyst to construct an active NiSe/TiO2 heterojunction for improving the photocatalytic H2 production of TiO2. The resultant 10%NiSe/TiO2 heterojunction exhibited 11 times higher photocatalytic H2-production activity than that of bare TiO2. The NiSe/TiO2 heterojunction and the photo-reduction of partial Ni2t to Ni0 notably accelerated the separation and transfer of photo-excited electron-hole pairs, and thus resulted in obvious improvement of H2-evolution activity. This work holds promise for the application of NiSe in photocatalysis as a high-efficiency photocatalytic cocatalyst.
关键词: NiSe/TiO2,Photoreduction,Heterojunction,Metal Ni0,Photocatalytic H2 evolution
更新于2025-11-14 17:04:02
-
Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy
摘要: In this study, typical TC6 titanium alloy was taken to investigate the effects of multiple laser peening (LP) on the vibration fatigue properties and microstructural evolution. The vibration fatigue experiments were conducted, while the vibration fatigue life of the specimens before and after LP was compared and the fracture morphologies were observed by scanning electron microscopy (SEM). In addition, the measurements of residual stress and microhardness were carried out. The microstructures produced by different treatments were also characterized by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The experimental results indicated that multiple LP could indeed enhance the vibration fatigue properties of TC6 titanium alloy. Comparing with the investigated specimen without LP, the vibration fatigue life of the specimen subjected to 5 times LP increased by 105.2%. Meanwhile, after 5 times LP, the surface residual stress transformed from tensile stress (+26 MPa) to compressive stress (?485 MPa), and the surface microhardness was 428 HV, which increased by 32.9% compared with the untreated sample. Additionally, high-density of dislocation and deformation twin were also generated after multiple LP. The improvement of vibration fatigue properties was attributed to the rewarding compressive residual stress and the beneficial microstructural evolution induced by multiple LP.
关键词: TC6 titanium alloy,Laser peening,Vibration fatigue properties,Microstructure evolution,Residual stress
更新于2025-11-14 17:04:02
-
Co and Fe Codoped WO <sub/>2.72</sub> as Alkaline‐Solution‐Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solar‐To‐Hydrogen Efficiency of 16.9%
摘要: Oxygen evolution electrode is a crucial component of efficient photovoltaic-water electrolysis systems. Previous work focuses mainly on the effect of electronic structure modulation on the oxygen evolution reaction (OER) performance of 3d-transition-metal-based electrocatalyst. However, high-atomic-number W-based compound with complex electronic structure for versatile modulation is seldom explored because of its instability in OER-favorable alkaline solution. Here, codoping induced electronic structure modulation generates a beneficial effect of transforming the alkaline-labile WO2.72 (WO) in to efficient alkaline-solution-stable Co and Fe codoped WO2.72 (Co&Fe-WO) with porous urchin-like structure. The codoping lowers the chemical valence of W to ensure the durability of W-based catalyst, improves the electron-withdrawing capability of W and O to stabilize the Co and Fe in OER-favorable high valence state, and enriches the surface hydroxyls, which act as reactive sites. The Co&Fe-WO shows ultralow overpotential (226 mV, J = 10 mA cm?2), low Tafel slope (33.7 mV dec?1), and good conductivity. This catalyst is finally applied to a photovoltaic-water splitting system to stably produce hydrogen for 50 h at a high solar-to-hydrogen efficiency of 16.9%. This work highlights the impressive effect of electronic structure modulation on W-based catalyst, and may inspire the modification of potential but unstable catalyst for solar energy conversion.
关键词: electrocatalysis,photovoltaic water splitting,oxygen evolution reaction,codoping,WO2.72
更新于2025-11-14 17:04:02
-
In-Situ Synthesis of Nb2O5/g-C3N4 Heterostructures as Highly Efficient Photocatalysts for Molecular H2 Evolution under Solar Illumination
摘要: This work focuses on the synthesis of heterostructures with compatible band positions and a favourable surface area for the efficient photocatalytic production of molecular hydrogen (H2). In particular, 3‐dimensional Nb2O5/g‐C3N4 heterostructures with suitable band positions and high surface area have been synthesized employing a hydrothermal method. The combination of a Nb2O5 with a low charge carrier recombination rate and a g‐C3N4 exhibiting high visible light absorption resulted in remarkable photocatalytic activity under simulated solar irradiation in the presence of various hole scavengers (triethanolamine (TEOA) and methanol). The following aspects of the novel material have been studied systematically: the influence of different molar ratios of Nb2O5 to g‐C3N4 on the heterostructure properties, the role of the employed hole scavengers, and the impact of the co‐catalyst and the charge carrier densities affecting the band alignment. The separation/transfer efficiency of the photogenerated electron‐hole pairs is found to increase significantly as compared to that of pure Nb2O5 and g‐C3N4, respectively, with the highest molecular H2 production of 110 mmol/g·h being obtained for 10 wt % of g‐C3N4 over Nb2O5 as compared with that of g‐C3N4 (33.46 mmol/g·h) and Nb2O5 (41.20 mmol/g·h). This enhanced photocatalytic activity is attributed to a sufficient interfacial interaction thus favouring the fast photogeneration of electron‐hole pairs at the Nb2O5/g‐C3N4 interface through a direct Z‐scheme.
关键词: Z‐Scheme,H2 evolution,hydrothermal synthesis,graphitic carbon nitride,photocatalysis,heterostructures,Niobium(V) oxide
更新于2025-11-14 17:03:37
-
Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation
摘要: PtPd bimetallic alloy nanoparticle (NP)-modified graphitic carbon nitride (g-C3N4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H2 evolution of the g-C3N4 nanosheets shows that it was significantly enhanced when PtPd alloy NPs were introduced as a co-catalyst. The 0.2 wt% PtPd/g-C3N4 composite photocatalyst gave a maximum H2 production rate of 1600.8 μmol g–1 h–1. Furthermore, when K2HPO4 was added to the reaction system, the H2 production rate increased to 2885.0 μmol g–1 h–1. The PtPd/g-C3N4 photocatalyst showed satisfactory photocatalytic stability and was able to maintain most of its photocatalytic activity after four experimental photocatalytic cycles. In addition, a possible mechanism for the enhanced photocatalytic activity was proposed and verified by various photoelectric techniques. These results demonstrate that the synergistic effect between PtPd and g-C3N4 helps to greatly improve the photocatalytic activity of the composite photocatalyst.
关键词: H2 evolution,PtPd alloy nanoparticles,Photocatalysis,g-C3N4 nanosheets
更新于2025-11-14 17:03:37