修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

14 条数据
?? 中文(中国)
  • Experimental study conducted for the identification of best heat absorption and dissipation methodology in solar photovoltaic panel

    摘要: The solar PV technology has become a significant alternative for conventional fossil fuel resources. The recent researches are focusing on techniques to increase the efficiency of the solar photovoltaic (PV) systems to address the growing needs of the global electricity demand. Maintaining the PV panel temperature according to the specified standard helps in harnessing the optimal power output consistently. Although there are various PV panel cooling techniques available in the existing literature, there is always a huge expectation among the energy sectors in terms of rising the efficiency value, as well as lowering the cost of investment. In this aspect, the proposed method provides the best solution by improving the efficiency of the solar photovoltaic panel by regulating the temperature using a material called as the Phase Change Material which is entrenched with an external finned heat sink to improve the thermal conductivity of the material PCM. In this work, the concept is investigated by an experimental setup under direct sun rays in the natural environmental conditions for four different cases (Case A, Case B, Case C, and Case D). The concept of temperature regulation is recorded through FLIR thermal imaging camera and the observations are presented. After thorough experimental investigations of all the four cases, it is found that PCM entrenched with heatsink (Case D) can certainly be an efficient approach to drop the operating temperature of the PV panel with lowest cost and enhance the efficiency of the PV panel to the maximum extent.

    关键词: Phase change material,Solar photovoltaic (PV) panel,Heat sink,FLIR thermal images

    更新于2025-09-16 10:30:52

  • Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system

    摘要: Concentrated photovoltaic/thermal hybrid collectors have received ever-increasing attention due to the simultaneous output of electric and thermal energy. For further improvement of concentrated hybrid PV/T systems, a simulation method combining the multiphysics fields is necessary to accurately analyze the optical, thermal, and electric performance. Herein, a three-dimensional numerical study has been conducted on a low concentrated photovoltaic/thermal system utilizing a heat transfer fluid as the cooling medium and a compound parabolic concentrator as the mirror field. A finite volume (FV)-CFD code has been employed to simulate the entire model, where the optical modelling is validated theoretically with the Monte Carlo ray-tracing method. The influences of employing various heatsink designs (U-type and Z-type) and coolants (water, ethylene glycol, and therminol VP-1) are numerically investigated. The economic feasibility of the hybrid PV/T system is also assessed in comparison with the standalone PV-cell. Good compatibility with the empirical data was obtained when the appropriate modelling tunings were applied. It is also shown that, on a typical day, the total energy and exergy efficiencies of the system are up to 57.66% and 7.94%, respectively. The Z-type heatsink decreases the average PV-cell temperature than the U-type design, and also the output power is slightly enhanced.

    关键词: Photovoltaic/thermal system,FV-DO radiation method,heat sink,energy and exergy analysis

    更新于2025-09-12 10:27:22

  • An experimental study of the performance of the solar cell with heat sink cooling system

    摘要: In the study, an experimental investigation to the performance of the solar cells coupled with heat sink is presented. Indoor experimental setup was designed and assembled to investigate the impact of using heat sink cooling system on the performance of solar cells. Halogen lamps used to simulate the solar radiation and the study is carried out at different solar radiation values. Moreover, the study is carried out at natural and forced air to cool the heat sink. The results show that using heat sink cooling system enhances the performance of the solar cell. Temperature of solar cell decreased by about 5.4 % and 11 % by using heat sink cooling system at natural and forced air over the heat sink, respectively. Moreover, the efficiency and power of the solar cell system increase by about 16 % when heat sink cooling system is used.

    关键词: Solar cell,Cooling,Heat sink,Performance,Fins

    更新于2025-09-12 10:27:22

  • [ASME ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels - San Francisco, California, USA (Monday 6 July 2015)] Volume 1: Thermal Management - A Study on the Thermo-Fluid Simulation Model Using Porous Media in the Power Conversion System

    摘要: When converting an electric power by an insulated-gate bipolar transistor (IGBT) module, the problem which is the heat generation in the IGBT module should be prudently considered in the design process. As an engineer reviews the cooling performance of power semi-conductor devices only at the component level, it is difficult to predict the reduction of airflow rates in the heat sink when power semi-conductor devices including the heat sink are integrated into the power conversion system. As the porous media model is adopted in the IGBT stack of the PCS, the problem that the meshes are heavily concentrated in the IGBT module including the heat sink, air, and IGBT/ diode chips can be evaded and the airflow rate which is reflected in the effect of flow resistance by all interior structures including the IGBT module is calculated. For the outdoor type PCS, the hotspot temperature on the heat sink of the simulation and experiment is 99.3 and 101.6 Celsius, respectively. The proposed numerical simulation model considerably accurately predicts the hotspot temperature on the heat sink and can earn benefits in terms of efforts of mesh generation and computation time.

    关键词: porous media model,heat sink,thermo-fluid simulation,power conversion system,IGBT module

    更新于2025-09-04 15:30:14