修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

15 条数据
?? 中文(中国)
  • [IEEE 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) - Odessa, Ukraine (2018.9.10-2018.9.14)] 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) - Spatial-Energy Characteristics of Focused Modes of Metallic Terahertz Laser Resonator

    摘要: Cellular networks are currently experiencing a tremendous growth of data traffic. To cope with this demand, a close cooperation between academic researchers and industry/standardization experts is necessary, which hardly exists in practice. In this paper, we try to bridge this gap between researchers and engineers by providing a review of current standard-related research efforts in wireless communication systems. Furthermore, we give an overview about our attempt in facilitating the exchange of information and results between researchers and engineers, via a common simulation platform for 3GPP long term evolution (LTE) and a corresponding webforum for discussion. Often, especially in signal processing, reproducing results of other researcher is a tedious task, because assumptions and parameters are not clearly specified, which hamper the consideration of the state-of-the-art research in the standardization process. Also, practical constraints, impairments imposed by technological restrictions and well-known physical phenomena, e.g., signaling overhead, synchronization issues, channel fading, are often disregarded by researchers, because of simplicity and mathematical tractability. Hence, evaluating the relevance of research results under practical conditions is often difficult. To circumvent these problems, we developed a standard-compliant open-source simulation platform for LTE that enables reproducible research in a well-defined environment. We demonstrate that innovative research under the confined framework of a real-world standard is possible, sometimes even encouraged. With examples of our research work, we investigate on the potential of several important research areas under typical practical conditions, and highlight consistencies as well as differences between theory and practice.

    关键词: MIMO,pilot power allocation,LTE,Heterogeneous networks,distributed antenna systems,reproducible research,frequency synchronization,multiuser gains

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Impact of Dynamic Shading in cSi PV Modules and Systems for Novel Applications

    摘要: With the dense deployment of small cells in the next generation of mobile networks, the users from different tiers suffer from high downlink interferences. In this paper, we propose a game theoretic approach for joint co-tier and cross-tier collaboration in heterogeneous networks and analyze the relevance of the proposed scheme. First, we propose a coalition structure game with a weighted Owen value as imputation, where the small-cell base stations (SBSs) and their connecting macrocell user equipments (MUEs) form a priori union. We prove that the proposed framework optimizes the users profit. As an additional global benefit, the SBSs are encouraged to host the harmed public users in their vicinity. Second, we propose a canonical game with a weighted solidarity value as imputation to allow cooperation among SBSs and MUEs when they fail to connect to nearby SBSs. We prove that the weak players are protected in this scheme and that a high degree of fairness is provided in the game. We compare through extensive simulations the proposed frameworks with state-of-the-art resource allocation solutions, access modes, and legacy game-theoretic approaches. We show that the proposed framework obtains the best performances for the MUEs and small-cells user equipments in terms of throughput and fairness. Throughput gain is in order of 40% even reaching 50% for both types of users.

    关键词: game theory,interference mitigation,resource allocation,heterogeneous networks,cooperative games,Small-cells

    更新于2025-09-23 15:21:01

  • A Scalable Soft-Switching Photovoltaic Inverter with Full-Range ZVS and Galvanic Isolation

    摘要: The introduction of heterogeneous wireless mesh technologies provides an opportunity for higher network capacity, wider coverage, and higher quality of service (QoS). Each wireless device utilizes different standards, data formats, protocols, and access technologies. However, the diversity and complexity of such technologies create challenges for traditional control and management systems. This paper proposes a heterogeneous metropolitan area network architecture that combines an IEEE 802.11 wireless mesh network (WMN) with a long-term evolution (LTE) network. In addition, a new heterogeneous routing protocol and a routing algorithm based on reinforcement learning called cognitive heterogeneous routing are proposed to select the appropriate transmission technology based on parameters from each network. The proposed heterogeneous network overcomes the problems of sending packets over long paths, island nodes, and interference in WMNs and increases the overall capacity of the combined network by utilizing unlicensed frequency bands instead of buying more license frequency bands for LTE. The work is validated through extensive simulations that indicate that the proposed heterogeneous WMN outperforms the LTE and Wi-Fi networks when used individually. The simulation results show that the proposed network achieves an increase of up to 200% in throughput compared with Wi-Fi-only networks or LTE-only networks.

    关键词: routing protocol,long-term evolution (LTE),reinforcement learning,next-generation network,Heterogeneous networks,wireless mesh network (WMN)

    更新于2025-09-23 15:21:01

  • [IEEE 2017 IEEE Workshop on Recent Advances in Photonics (WRAP) - Hyderabad (2017.12.18-2017.12.19)] 2017 IEEE Workshop on Recent Advances in Photonics (WRAP) - Detection of Fibre Laser Instability Using a Constant Fraction Discriminator

    摘要: Cellular networks are currently experiencing a tremendous growth of data traffic. To cope with this demand, a close cooperation between academic researchers and industry/standardization experts is necessary, which hardly exists in practice. In this paper, we try to bridge this gap between researchers and engineers by providing a review of current standard-related research efforts in wireless communication systems. Furthermore, we give an overview about our attempt in facilitating the exchange of information and results between researchers and engineers, via a common simulation platform for 3GPP long term evolution (LTE) and a corresponding webforum for discussion. Often, especially in signal processing, reproducing results of other researcher is a tedious task, because assumptions and parameters are not clearly specified, which hamper the consideration of the state-of-the-art research in the standardization process. Also, practical constraints, impairments imposed by technological restrictions and well-known physical phenomena, e.g., signaling overhead, synchronization issues, channel fading, are often disregarded by researchers, because of simplicity and mathematical tractability. Hence, evaluating the relevance of research results under practical conditions is often difficult. To circumvent these problems, we developed a standard-compliant open-source simulation platform for LTE that enables reproducible research in a well-defined environment. We demonstrate that innovative research under the confined framework of a real-world standard is possible, sometimes even encouraged. With examples of our research work, we investigate on the potential of several important research areas under typical practical conditions, and highlight consistencies as well as differences between theory and practice.

    关键词: MIMO,pilot power allocation,LTE,Heterogeneous networks,distributed antenna systems,reproducible research,frequency synchronization,multiuser gains

    更新于2025-09-23 15:19:57

  • Joint Optimization of FeICIC and Spectrum Allocation for Spectral and Energy Efficient Heterogeneous Networks

    摘要: Cellular heterogeneous networks (HetNets) with densely deployed small cells can effectively boost network capacity. The co-channel interference and the prominent energy consumption are two crucial issues in HetNets which need to be addressed. Taking the traffic variations into account, this paper proposes a theoretical framework to analyze spectral efficiency (SE) and energy efficiency (EE) considering jointly further-enhanced inter-cell interference coordination (FeICIC) and spectrum allocation (SA) via a stochastic geometric approach for a two-tier downlink HetNet. SE and EE are respectively derived and validated by Monte Carlo simulations. To create spectrum and energy efficient HetNets that can adapt to traffic demands, a non-convex optimization problem with the power control factor, resource partitioning fraction and number of subchannels for the SE and EE tradeoff is formulated, based on which, an iterative algorithm with low complexity is proposed to achieve the sub-optimal solution. Numerical results confirm the effectiveness of the joint FeICIC and SA scheme in HetNets. Meanwhile, a system design insight on resource allocation for the SE and EE tradeoff is provided.

    关键词: sleep mode,stochastic geometry,spectral efficiency,spectrum allocation,FeICIC,heterogeneous networks,energy efficiency

    更新于2025-09-19 17:15:36

  • [IEEE IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium - Yokohama, Japan (2019.7.28-2019.8.2)] IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium - Structural Optimization of Receiving System Based on Optimal Field of View for Shallow Sea Laser Measurement

    摘要: Recently, mobile networking systems have been designed with more complexity of infrastructure and higher diversity of associated devices and resources, as well as more dynamical formations of networks, due to the fast development of current Internet and mobile communication industry. In such emerging mobile heterogeneous networks (HetNets), there are a large number of technical challenges focusing on the efficient organization, management, maintenance, and optimization, over the complicated system resources. In particular, HetNets have attracted great interest from academia and industry in deploying more effective solutions based on artificial intelligence (AI) techniques, e.g., machine learning, bio-inspired algorithms, fuzzy neural network, and so on, because AI techniques can naturally handle the problems of large-scale complex systems, such as HetNets towards more intelligent and automatic-evolving ones. In this paper, we discuss the state-of-the-art AI-based techniques for evolving the smarter HetNets infrastructure and systems, focusing on the research issues of self-configuration, self-healing, and self-optimization, respectively. A detailed taxonomy of the related AI-based techniques of HetNets is also shown by discussing the pros and cons for various AI-based techniques for different problems in HetNets. Opening research issues and pending challenges are concluded as well, which can provide guidelines for future research work.

    关键词: ant colony optimization,self-organization networks,heterogeneous networks,genetic algorithms,Artificial intelligence

    更新于2025-09-19 17:13:59

  • [IEEE 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) - Sao Paulo, Brazil (2019.8.26-2019.8.30)] 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) - Realistic Simulations and Design of GaAs Solar Cells produced by Molecular Beam Epitaxy

    摘要: Recently, mobile networking systems have been designed with more complexity of infrastructure and higher diversity of associated devices and resources, as well as more dynamical formations of networks, due to the fast development of current Internet and mobile communication industry. In such emerging mobile heterogeneous networks (HetNets), there are a large number of technical challenges focusing on the efficient organization, management, maintenance, and optimization, over the complicated system resources. In particular, HetNets have attracted great interest from academia and industry in deploying more effective solutions based on artificial intelligence (AI) techniques, e.g., machine learning, bio-inspired algorithms, fuzzy neural network, and so on, because AI techniques can naturally handle the problems of large-scale complex systems, such as HetNets towards more intelligent and automatic-evolving ones. In this paper, we discuss the state-of-the-art AI-based techniques for evolving the smarter HetNets infrastructure and systems, focusing on the research issues of self-configuration, self-healing, and self-optimization, respectively. A detailed taxonomy of the related AI-based techniques of HetNets is also shown by discussing the pros and cons for various AI-based techniques for different problems in HetNets. Opening research issues and pending challenges are concluded as well, which can provide guidelines for future research work.

    关键词: ant colony optimization,self-organization networks,heterogeneous networks,genetic algorithms,Artificial intelligence

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Localized Structures in Dispersive Doubly Resonant Optical Parametric Oscillators

    摘要: The demand for spectrum resources has increased dramatically with the advent of modern wireless applications. Spectrum sharing, considered as a critical mechanism for 5G networks, is envisioned to address spectrum scarcity issue and achieve high data rate access, and guaranteed the quality of service (QoS). From the licensed network’s perspective, the interference caused by all secondary users (SUs) should be minimized. From secondary networks point of view, there is a need to assign networks to SUs in such a way that overall interference is reduced, enabling the accommodation of a growing number of SUs. This paper presents a network selection and channel allocation mechanism in order to increase revenue by accommodating more SUs and catering to their preferences, while at the same time, respecting the primary network operator’s policies. An optimization problem is formulated in order to minimize accumulated interference incurred to licensed users and the amount that SUs have to pay for using the primary network. The aim is to provide SUs with a specific QoS at a lower price, subject to the interference constraints of each available network with idle channels. Particle swarm optimization and a modified version of the genetic algorithm are used to solve the optimization problem. Finally, this paper is supported by extensive simulation results that illustrate the effectiveness of the proposed methods in finding a near-optimal solution.

    关键词: optimization,5G heterogeneous networks,Channel allocation,network selection

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Multilayer dielectric structure for mode selection of wide-aperture laser

    摘要: With the dense deployment of small cells in the next generation of mobile networks, the users from different tiers suffer from high downlink interferences. In this paper, we propose a game theoretic approach for joint co-tier and cross-tier collaboration in heterogeneous networks and analyze the relevance of the proposed scheme. First, we propose a coalition structure game with a weighted Owen value as imputation, where the small-cell base stations (SBSs) and their connecting macrocell user equipments (MUEs) form a priori union. We prove that the proposed framework optimizes the users profit. As an additional global benefit, the SBSs are encouraged to host the harmed public users in their vicinity. Second, we propose a canonical game with a weighted solidarity value as imputation to allow cooperation among SBSs and MUEs when they fail to connect to nearby SBSs. We prove that the weak players are protected in this scheme and that a high degree of fairness is provided in the game. We compare through extensive simulations the proposed frameworks with state-of-the-art resource allocation solutions, access modes, and legacy game-theoretic approaches. We show that the proposed framework obtains the best performances for the MUEs and small-cells user equipments in terms of throughput and fairness. Throughput gain is in order of 40% even reaching 50% for both types of users.

    关键词: game theory,interference mitigation,resource allocation,heterogeneous networks,cooperative games,Small-cells

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Low Cost GaSb N on P ThermoPhotoVoltaic (TPV) Cells

    摘要: Future wireless networks will exploit a variety of wireless technologies to provide ubiquities connectivity to mobile devices in the form of cellular, Wireless Local Area Networks, and femtocells. Inevitably, future wireless networks will be diverse in nature, employing a number of different techniques to associate the hand held devices that are deemed to use the network. Furthermore, mobile users seek for seamless connectivity, while roaming in the midst of different networks. This requires the mobile device and the wireless networks be capable of performing a vertical handover, when the mobile nodes find themselves in the vicinity of a foreign network. Regardless of the technological challenges in terms of security, data integrity and mutual authentication between participating agents remain a significant concern in heterogeneous networks. This paper explores these concerns by examining a number of solutions proposed for vertical handover, and identifies EAP Reauthentication Protocol (ERP) as a technology-independent flexible mechanism for a vertical handover. EAP-ERP satisfies the mobility requirements of future hand held devices while promising the desired security futures. In view of thoroughly exploring EAP-ERP, Casper/FDR has been used in this paper to analyze its security properties under various conditions. The results indicate that despite the initial perception, EAP-ERP lacks mutual authentication between agents, while the integrity of keying material is adequately protected.

    关键词: security verification,vertical handover,Casper,formal verification,Heterogeneous networks

    更新于2025-09-19 17:13:59