- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Hexagonal Boron Nitride Phononic Crystal Waveguides
摘要: Hexagonal boron nitride (h-BN), one of the hallmark van der Waals (vdW) layered crystals with an ensemble of attractive physical properties, is playing increasingly important roles in exploring two-dimensional (2D) electronics, photonics, mechanics, and emerging quantum engineering. Here we report on the demonstration of h-BN phononic crystal waveguides with designed pass and stop bands in the radio frequency (RF) range, and controllable wave propagation and transmission, by harnessing arrays of coupled h-BN nanomechanical resonators with engineerable coupling strength. Experimental measurements validate that these phononic crystal waveguides confine and support 15 to 24 megahertz (MHz) wave propagation over hundreds of micrometers. Analogous to solid-state crystal lattices, phononic bandgaps and dispersive behaviors have been observed and systematically investigated in the h-BN phononic waveguides. Guiding and manipulating acoustic waves on such additively integratable h-BN platform may facilitate multiphysical coupling and information transduction, and open up new opportunities for coherent on-chip signal processing and communication via emerging h-BN photonic and phononic devices.
关键词: integrated phononics,phononic crystal waveguide,nanoelectromechanical systems (NEMS),acoustic wave,Hexagonal boron nitride (h-BN),radio frequency
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS) - Seoul, Korea (South) (2019.1.27-2019.1.31)] 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS) - High-Frequency Hexagonal Boron Nitride (h-BN) Phononic Waveguides
摘要: This digest paper presents the first experimental demonstration of nanoscale phononic waveguides based on a two-dimensional (2D) layered crystalline material, namely hexagonal boron nitride (h-BN). Taking advantage of the planar geometry, the challenges in nanofabrication of 2D materials can be circumvented through a heterogeneous integration approach. Rich wave propagation characteristics of h-BN phononic waveguides are revealed in both finite element method (FEM) simulations and transmission measurements. Numerical analysis further indicates that the frequency response of the designed h-BN phononic waveguides can be finely tuned by varying the thickness or tension level of the h-BN crystals, across the high frequency (HF, 3?30 MHz) to very high frequency (VHF, 30?300 MHz) bands. Manipulation and guiding of high frequency mechanical waves on integratable 2D device platforms will open new opportunities in radio-frequency (RF) signal processing and on-chip quantum information technologies.
关键词: phononic waveguides,very high frequency (VHF),radio-frequency (RF) signal processing,quantum information technologies,high frequency (HF),hexagonal boron nitride (h-BN)
更新于2025-09-12 10:27:22