- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fabrication of highly efficient and stable hole‐transport material free perovskite solar cells through morphology and interface engineering: full ambient process
摘要: Carbon based hole-transport material (HTM) free perovskite solar cells (PVSCs) with low cost and high stability have attracted research interests. Here, we report a facile way to improve the performance of HTM free PVSCs by employing two strategies: firstly, adding a small amount of tetrahydrofuran (THF) in lead iodide (PbI2)/N,N-dimethylformamide (DMF) solution to improve the quality of perovskite film; secondly, introducing an ultra-thin Al2O3 film at the interface of TiO2/perovskite to reduce charge recombination. THF is found to facilitate the formation of homogenous perovskite films with better coverage, while the ultra-thin Al2O3 layer will avoid the direct contact of TiO2 with CH3NH3PbI3. The Al2O3 layer can effectively block holes and prevents charge recombination, thus lead to a dramatic improvement of open circuit voltage and fill factor in PVSCs. Moreover, our PVSCs show excellent long term stability with no degradation for 1000 hours under ambient conditions. We provide a facile way for the future commercialization of efficient low-cost HTM-free PVSCs.
关键词: hole conductor free,interface engineering,perovskite solar cells,high stability
更新于2025-10-22 19:40:53
-
Perovskite solar cells based on the synergy between carbon electrodes and polyethylene glycol additive with excellent stability
摘要: The quality of the photoactive layer gravely affects the characteristics and stabilities of photovoltaic device. Here, by introducing polyethylene glycol (PEG) into the methylammonium lead trihalide (MAPbI3) precursor solution, we fabricate high-quality MAPbI3 perovskite film with high coverage and large grain size. By adjusting the PEG concentration into the perovskite film, the hole-conductor-free mesoporous perovskite solar cell with carbon electrode exhibits a boosted power conversion efficiency of 11.62%, which originates primarily from the enhancements of light absorption and acceleration of carriers transfer. Meanwhile, hygroscopic PEG protects the perovskite film from moisture, which leads to the perovskite film and corresponding device exhibit superior stability. This work confirms a high-efficiency and feasible strategy using polymer materials to enhance the performance in power conversion efficiency and stability of perovskite solar cells.
关键词: Carbon counter electrode,Hygroscopic polyethylene glycol additive,Perovskite solar cells,High stability,Hole-conductor-free
更新于2025-09-23 15:21:01
-
Applying neoteric MgTiO3-coated TiO2 nanoparticulate films as scaffold layers in perovskite solar cells based on carbon counter electrode for retarding charge recombination
摘要: MgTiO3-coated TiO2 mesoporous scaffold layers were fabricated and applied in perovskite solar cells (PSCs) based on carbon counter electrode (CCE), in which TiO2 mesoporous layers were treated with different concentration of Mg2+ solution. Compared with PSCs based on pure TiO2 mesoporous layer, the open circuit voltage (Voc) and circuit photocurrent density (Jsc) of MgTiO3/TiO2-based devices significant improved. Intensive characterizations including scanning electron microscopy, electrochemical impedance spectroscopy can confirm that the presence of MgTiO3 shell layer can’t only retard charge recombination at CH3NH3PbI3/TiO2 interface, but also have a strong effect on the perovskite film growth. Based on the optimized treating concentration of 0.10 M, power conversion efficiency (PCE) of 10.39% could be achieved for the hole-conductor-free PSCs with excellent long-term stability, suggesting immense potential for large-scale industrial production in the future.
关键词: Carbon counter electrode,Perovskite solar cell,MgTiO3/TiO2,Mesoporous scaffold layer,Hole-conductor-free
更新于2025-09-23 15:19:57