- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Engineering SrSnO <sub/>3</sub> Phases and Electron Mobility at Room Temperature Using Epitaxial Strain
摘要: High-speed electronics require epitaxial films with exceptionally high carrier mobility at room temperature. Alkaline-earth stannates with high room-temperature mobility show outstanding prospects for oxide electronics operating at ambient temperatures. However, despite significant progress over the last few years, mobility in stannate films has been limited by dislocations due to the inability to grow fully coherent films. Here, we demonstrate the growth of coherent, strain-engineered phases of epitaxial SrSnO3 (SSO) films using a radical-based molecular beam epitaxy approach. Compressive strain stabilized the high-symmetry tetragonal phase of SSO at room temperature (RT), which, in bulk, exists only at temperatures between 1062 K and 1295 K. We achieved a mobility enhancement of over 300% in doped films compared with the low temperature orthorhombic polymorph. Using comprehensive temperature-dependent synchrotron-based X-ray measurements, electronic transport and first principles calculations, crystal and electronic structures of SSO films were investigated as a function of strain. We argue that strain-engineered films of stannate will enable high mobility oxide electronics operating at RT with the added advantage of being optically transparent.
关键词: phase transition,Hybrid molecular beam epitaxy,half-order diffraction,strain engineering,density functional theory,high mobility,Octahedral rotations
更新于2025-09-09 09:28:46