- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Prickly pear fruit extract as photosensitizer for dye-sensitized solar cell
摘要: In this study, we have explored prickly pear fruit extract as a photosensitizer in dye-sensitized solar cells (DSSC). The photosensitizer was isolated from prickly pear fruits by extraction method using ethanol as solvent. Structural, morphological and optical properties of prickly pear extract characterized by XRD, SEM, UV-VIS-DRS, FTIR spectra, respectively. UV-VIS absorption and FTIR spectra of prickly pear fruit extract confirm the presence of betacyanin and hydroxyl groups anchoring onto the TiO2 surface. The absorption maxima at 534 nm in the visible region is prominent. The presence of betacyanin in the extract is indicative that the dye will be useful as a sensitizer in DSSC. Reflectance edge of TiO2 is red-shifted upon the adsorption of natural dye. The XPS analysis showed the charge state of hydroxyl (O-H) groups that are attached with the natural dye adsorbed onto the surface of TiO2. The fabricated DSSC had a conversion efficiency (?) of 0.56 % with highest fill factor (FF) of 85.0%, open-circuit voltage (Voc) of 0.56 V and short circuit-current density (Jsc) with 1.17 mA/cm2. The value obtained for the fill factor is promising to further explore the prickly pear extract for applicability in DSSC by improving the efficiency.
关键词: Dye-sensitized solar cells,Hydroxyl groups,Prickly pear fruit extract,Photosensitizer,TiO2,Fill factor,Betacyanin,Conversion efficiency
更新于2025-09-19 17:13:59
-
Effects of mechanical stretching, desorption and isotope exchange on deuterated eucalypt wood studied by near infrared spectroscopy
摘要: Deuterium exchange combined with near infrared spectroscopy was used to study the roles of accessible and inaccessible cellulose in the load transfer of eucalyptus wood. Monitoring the drying process helped to assign bands of deuterated wood samples. Polarized NIR spectra of protonated and deuterated samples confirmed that inaccessible hydroxyl groups in eucalyptus wood were preferably oriented in the longitudinal direction. The spectral changes on NIR spectra caused by mechanical strain could be highlighted by averaging loading and unloading cycles to compensate for effects of desorption and isotope re-exchange due to environmental fluctuations. After deuteration, the bands affected by mechanical strain at around 6420, 6240 and 4670 cm-1, which had been assigned to hydroxyl groups in cellulose, remained at these positions, suggesting the inaccessible cellulose fraction was the main load-bearing component in wood. A small band at around 4700 cm-1 responding to mechanical strain, becoming visible in the deuterated spectra, indicated that accessible hydroxyls also contributed to the load transfer. Furthermore, the measurements confirmed previous reports of moisture adsorption of wood under tensile stress.
关键词: accessibility,tensile strain,deuterium oxide,cellulose,Eucalyptus regnans,dichroic ratio,hydroxyl groups
更新于2025-09-04 15:30:14
-
Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection
摘要: It is known that the etching yield (i.e., sputtering yield) of tin-doped indium oxide (ITO) by hydrocarbon ions (CHx+) is higher than its corresponding physical sputtering yield [H. Li et al., J. Vac. Sci. Technol. A 33, 060606 (2015)]. In this study, the effects of hydrogen in the incident hydrocarbon ion beam on the etching yield of ITO have been examined experimentally and theoretically with the use of a mass-selected ion beam system and by first-principles quantum mechanical (QM) simulation. As in the case of ZnO [H. Li et al., J. Vac. Sci. Technol. A 35, 05C303 (2017)], mass-selected ion beam experiments have shown that the physical sputtering yield of ITO by chemically inert Ne ions increases after a pretreatment of the ITO film by energetic hydrogen ion injection. First-principles QM simulation of the interaction of In2O3 with hydrogen atoms shows that hydrogen atoms embedded in In2O3 readily form hydroxyl (OH) groups and weaken or break In–O bonds around the hydrogen atoms, making the In2O3 film less resistant to physical sputtering. This is consistent with experimental observation of the enhanced etching yields of ITO by CHx+ ions, considering the fact that hydrogen atoms of the incident CHx+ ions are embedded into ITO during the etching process.
关键词: quantum mechanical simulation,sputtering yield,tin-doped indium oxide,hydrogen ion injection,physical sputtering,ITO,etching yield,In2O3,hydrocarbon ions,hydroxyl groups
更新于2025-09-04 15:30:14