- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2017
- spectral reconstruction
- interference
- polarization
- transform
- imaging spectrometer
- Optoelectronic Information Science and Engineering
- BITTT
- Zhejiang University
- Guilin University of Aerospace Technology
-
Coordination geometry-induced optical imaging of <scp>l</scp> -cysteine in cancer cells using imidazopyridine-based copper( <scp>ii</scp> ) complexes
摘要: Overexpression of cysteine cathepsins proteases has been documented in a wide variety of cancers, and enhances the L-cysteine concentration in tumor cells. We report the synthesis and characterization of copper(II) complexes [Cu(L1)2(H2O)](SO3CF3)2, 1, L1 = 3-phenyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine, [Cu(L2)2(SO3CF3)]SO3CF3, 2, L2 = 3-(4-methoxyphenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine, [Cu(L3)2(H2O)](SO3CF3)2, 3, L3 = 3-(3,4-dimethoxy-phenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine and [Cu(L4)2(H2O)](SO3CF3)2, 4, L4 = dimethyl-[4-(1-pyridin-2-yl-imidazo[1,5-a]pyridin-3-yl)phenyl]amine as 'turn-on' optical imaging probes for L-cysteine in cancer cells. The molecular structure of complexes adopted distorted trigonal pyramidal geometry (τ, 0.68–0.87). Cu–Npy bonds (1.964–1.989 ?) were shorter than Cu–Nimi bonds (2.024–2.074 ?) for all complexes. Geometrical distortion was strongly revealed in EPR spectra, showing gk (2.26–2.28) and Ak values (139–163 × 10?4 cm?1) at 70 K. The d–d transitions appeared around 680–741 and 882–932 nm in HEPES, which supported the existence of five-coordinate geometry in solution. The Cu(II)/Cu(I) redox potential of 1 (0.221 V vs. NHE) was almost identical to that of 2 and 3 but lower than that of 4 (0.525 V vs. NHE) in HEPES buffer. The complexes were almost non-emissive in nature, but became emissive by the interaction of L-cysteine in 100% HEPES at pH 7.34 via reduction of Cu(II) to Cu(I). Among the probes, probe 2 showed selective and efficient turn-on fluorescence behavior towards L-cysteine over natural amino acids with a limit of detection of 9.9 × 10?8 M and binding constant of 2.3 × 105 M?1. The selectivity of 2 may have originated from a nearly perfect trigonal plane adopted around a copper(II) center (~120.70°), which required minimum structural change during the reduction of Cu(II) to Cu(I) while imaging Cys. The other complexes, with their distorted trigonal planes, required more reorganizational energy, which resulted in poor selectivity. Probe 2 was employed for optical imaging of L-cysteine in HeLa cells and macrophages. It exhibited brighter fluorescent images by visualizing Cys at pH 7.34 and 37 °C. It showed relatively less toxicity for these cell lines as ascertained by the MTT assay.
关键词: optical imaging,cancer cells,turn-on fluorescence,imidazopyridine,L-cysteine,Copper(II) complexes
更新于2025-11-21 11:08:12
-
Direct Three-Dimensional Visualization of Membrane Fouling by Confocal Laser Scanning Microscopy
摘要: Membrane-based separation is an important technique for removing emulsified oil from water. However, the mechanisms of fouling are complex because of the deformability and potential for coalescence and break-up of the oil droplets. Here, we report for the first time direct, three-dimensional (3D) visualization of oil droplets on electrospun fiber microfiltration membranes after a period of membrane-based separation of oil-in-water emulsions. High-resolution 3D images were acquired by a dual-channel confocal laser scanning microscopy (CLSM) technique in which both the fibers and the oil (dodecane) were fluorescently labeled. The morphology of dodecane as the foulant was observed for two different types of fibers, an oleophobic nylon (PA6(3)T), and oleophilic polyvinylidene fluoride (PVDF). Through direct visualization, the rejected oil was found to form droplets of clam-shell shape on the PA6(3)T fibers, whereas the oil tended to wet the PVDF fibers and spread across the membrane. The morphology was also analyzed as a function of separation time (i.e., "4D" imaging), as the oil accumulated within and upon the membranes. The observations are qualitatively consistent with a transition from blocking of individual pores in the membrane to coalescence of oil droplets into coherent liquid films with increasing filtration time. Analysis of permeate flux using blocking filtration models corroborate the transition of fouling modes indicated by the 3D images. This direct, 3D visualization CLSM technique is a powerful tool for characterizing the mechanisms of fouling in membranes used for liquid emulsion separations.
关键词: membrane fouling,3D imaging,oil emulsion,microfiltration,direct visualization
更新于2025-11-21 11:08:12
-
Enhancing magnetic resonance/photoluminescence imaging-guided photodynamic therapy by multiple pathways
摘要: Mitochondria, which are a major source of adenosine triphosphate (ATP) and apoptosis regulators, are the key organelles that promote tumor cell proliferation, and their dysfunction affects tumor cell behavior. Additionally, mitochondria have been shown to play a central role in the biosynthesis of protoporphyrin IX (PpIX), which is a widely used photosensitizer that has been used for tumor detection, monitoring and photodynamic therapy. Nevertheless, photosensitizers administrated exogenously are often restricted by limited bioavailability. δ-Aminolevulinic acid (δ-ALA) is a naturally occurring delta amino acid that can be converted in situ to PpIX via the heme biosynthetic pathway in mitochondria. Because δ-ALA is the precursor for PpIX, δ-ALA-based photodynamic therapy (PDT) shows promise in treating cancer. However, the accumulation of δ-ALA within endosomal system limits the production of PpIX and eventually impedes its effectiveness. Theranostic nanoparticles (NPs) capable of endosomal escape are expected to optimize the endogenous biosynthetic yield. In this study, δ-ALA was improved with triphenylphosphonium cation (TPP+), a high net position cation in endosomal escape and as a mitochondria-targeting ligand, and was further modified with bovine serum albumin stabilized manganese dioxide (MnO2). The tumor microenvironment (TME) responsive MnO2 in this system can elevate oxygen content to relieve hypoxia. Both enhanced photosensitizer yield and elevated oxygen contributing to the final therapeutic effect. Moreover, the enhancement of magnetic resonance imaging (MRI) (r1=5.410 s-1mM-1) stemming from the degradation of MnO2 by the TME could serve as a guide prior to treatment for accurate location, while in situ hysteretic photoluminescence imaging derived from PpIX can be utilize as a supervisor for the biomedical prognosis evaluation. This systematic design could broaden application and highlight the considerable therapeutic promise of PDT.
关键词: dual-imaging nanoplatform,mitochondria,endogenously biosynthetic photosensitizer
更新于2025-11-21 11:08:12
-
Lysosome-Targeted Single Fluorescence Probe for Two-Channel Imaging Intracellular SO2 and Biothiols
摘要: As the members of reactive sulfur species, SO2 and biothiols play a signi?cant role in physiological and pathological processes and directly in?uence numerous diseases. Furthermore, SO2 and biothiols can provide a reductive environment for lysosomes to carry out their optimal functionality. To this end, the development of single ?uorescent probes for imaging SO2 and biothiols from different emission channels is highly desirable for understanding their physiological nature. Here, a lysosome-targeted ?uorescent probe (BPO-DNSP) with a dual reaction site for SO2 and biothiols was presented. BPO-DNSP can sensitively and selectively respond to SO2 in the green channel with a large Stokes shift over 105 nm, and to biothiols in the near-infrared emission channel with a large Stokes shift over 109 nm. The emission shift for the two channels was as high as 170 nm. Colocalization experiments veri?ed that BPO-DNSP can selectively enrich lysosomes. Notably, BPO-DNSP can not only be used to image intracellular SO2 and biothiols from two different channels, but also to monitor the conversion of biothiols to SO2 without adding exogenous enzymes in living HeLa cells.
关键词: ?uorescence imaging,lysosome-targeted,single ?uorescent probe,biothiols,SO2
更新于2025-11-21 11:08:12
-
A fluorescent probe based on tetrahydro[5]helicene derivative with large Stokes shift for rapid and highly selective recognition of hydrogen sulfide
摘要: In this work, we have designed and synthesized a dinitrobenzene-sulfonate tetrahydro[5]helicene (H-DNP) as an effective fluorescent probe for detection of hydrogen sulfide (H2S). Upon the addition of H2S, a significant fluorescence enhancement (75-fold) at 495 nm can be observed with a distinct color change from colorless to yellow. Additionally, H-DNP shows low background spectroscopic signal, large Stokes Shift up to ~140 nm, good sensitivity, rapid response time less than 2 min, low detection limit (48 nM) and high selectivity towards common bio-thiols (Cysteine, Homocysteine and Glutathione). Compared with the previous dinitrophenoxy tetrahydro[5]helicene, this probe has shorter response time and lower detection limit. Most importantly, this probe H-DNP has low toxicity to cells and excellent cell permeability, which can be applied to visualize H2S in living cells.
关键词: Fluorescence,Cell imaging,Probe,4-dinitrobenzene,Helicene,2,Hydrogen sulfide
更新于2025-11-21 11:08:12
-
Measuring the interaction of transcription factor Nrf2 with its negative regulator Keap1 in single live cells by an improved FRET/FLIM analysis
摘要: Transcription factor NF-E2 p45-related factor 2 (Nrf2) and its principal negative regulator, Kelch-like ECH-associated protein 1 (Keap1), comprise a molecular effector and sensor system that robustly responds to perturbations of the cellular redox homeostasis by orchestrating a comprehensive cytoprotective program. Under homeostatic conditions, Nrf2 is a short-lived protein, which is targeted for ubiquitination and proteasomal degradation. Upon encounter of electrophiles, oxidants or pro-inflammatory stimuli, the cysteine sensors in Keap1 are chemically modified, rendering Keap1 unable to target Nrf2 for degradation, and consequently leading to accumulation of the transcription factor and enhanced transcription of cytoprotective genes. Detailed understanding of the protein-protein interactions between Nrf2 and Keap1 has been achieved by use of various in vitro systems, but few assays are available to assess these interactions in the context of the living cell. We previously developed an imaging-based FLIM/FRET methodology to visualise and measure the interaction between Nrf2 and Keap1 in single cells. Here, our goal was to improve this methodology in order to increase throughput and precision, and decrease cell-to-cell variability. To eliminate the possibility of orientation bias, we incorporated a flexible linker between Keap1 and the FRET acceptor fluorescent protein tag. To ensure the correct image capture of Nrf2 fused to the FRET donor fluorescent protein tag, we matched the maturation time of the fluorescent tag to the half-life of the endogenous Nrf2, by using sfGFP as the FRET donor. Using a global binning approach increased the assay throughput, whereas including the measured Instrument Response Function in the analysis improved precision. The application of this methodology revealed a strong covariation of the results with the expression level of the acceptor. Taking the acceptor level into account circumvented cell-to-cell variability and enhanced sensitivity of the measurements of the Keap1-Nrf2 interaction in live cells.
关键词: FRET,live cell imaging,fluorescence lifetime,FLIM,sfGFP,protein-protein interaction,global binning,Keap1,Instrument Response Function,Nrf2
更新于2025-11-21 11:08:12
-
Multifunctional Thermosensitive Liposomes Based on Natural Phase Change Material: Near-Infrared Light-Triggered Drug Release and Multimodal Imaging Guided Cancer Combination Therapy
摘要: Multifunctional theranostic nanoplatforms (NPs) in response to environment stimulations for on-demand drug release are highly desirable. Herein, the near-infrared (NIR)-absorbing dye, indocyanine green (ICG) and the antitumor drug, doxorubicin (DOX) were efficiently co-encapsulated into the thermosensitive liposomes based on natural phase change material (PCM). Folate and conjugated gadolinium chelate-modified liposome shells enhance active targeting and magnetic resonance (MR) performance of the NPs while maintaining the size of the NPs. The ICG/DOX loaded and gadolinium chelates conjugated temperature-sensitive liposomes nanoplatforms (ID@TSL-Gd NPs) exhibited NIR-triggered drug release and prominent chemo-, photothermal, photodynamic therapy properties. With the co-encapsulated ICG, DOX and the conjugated gadolinium chelates, the ID@TSL-Gd NPs can be used for triple-modal imaging (fluorescence/photoacoustic/magnetic resonance imaging, FL/PAI/MRI) guided combination tumor therapy (chemotherapy, photothermotherapy and photodynamic therapy, Chemo/PTT/PDT). After tail vein injection, the ID@TSL-Gd NPs accumulated effectively in subcutaneous HeLa tumor of mice. The tumor was effectively suppressed by accurate imaging guided NIR triggered phototherapy and chemotherapy, and no tumor regression and side effects were observed. In summary, the prepared ID@TSL-Gd NPs achieved multimodal imaging-guided cancer combination therapy, providing a promising platform for improving diagnosis and treatment of cancer.
关键词: Multimodal imaging,Liposomes,Thermosensitive,Combination therapy,Phase change material
更新于2025-11-21 11:08:12
-
A novel peptide-based fluorescent chemosensor for Cd(II) ions and its applications in bioimaging
摘要: Nowadays, it is of great significance to develop a novel fluorescent chemosensor for Cd(II) ions detection with cost-effective, rapid, facile and applicable to environment and biological milieus. Herein, we report a new peptide-based fluorescent chemosensor DSC (Dan-Ser-Cys-NH2) based on dipeptide (Ser-Cys-NH2) conjugated with dansyl group, which was synthesized using solid phase peptide synthesis (SPPS) technology. As designed, DSC exhibited fluorescent “turn-on” response for Cd2+ in 100% aqueous solution over a wide range of pH values based on photoinduced electron transfer (PET). The stoichiometry binding of DSC and Cd2+ was determined to be 2:1 by Job’s plot and ESI-MS analysis. Furthermore, DSC showed highly sensitive for Cd2+ and a low detection limit of 13.8 nM. What's more, DSC has cell permeability and low cytotoxicity, and fluorescence imaging experiments demonstrated that DSC was capable of monitoring Cd2+ in living HK2 cells by confocal microscopy.
关键词: Fluorescent chemosensor,Cell imaging,Cd(II) ions,Dansyl group,Dipeptide
更新于2025-11-21 11:08:12
-
<i>In vivo</i> imaging reveals reduced activity of neuronal circuits in a mouse tauopathy model
摘要: Pathological alterations of tau protein play a significant role in the emergence and progression of neurodegenerative disorders. Tauopathies are characterized by detachment of the tau protein from neuronal microtubules, and its subsequent aberrant hyper-phosphorylation, aggregation and cellular distribution. The exact nature of tau protein species causing neuronal malfunction and degeneration is still unknown. In the present study, we used mice transgenic for human tau with the frontotemporal dementia with parkinsonism-associated P301S mutation. These mice are prone to develop fibrillar tau inclusions, especially in the spinal cord and brainstem. At the same time, cortical neurons are not as strongly affected by fibrillar tau forms, but rather by soluble tau forms. We took advantage of the possibility to induce formation of neurofibrillary tangles in a subset of these cortical neurons by local injection of preformed synthetic tau fibrils. By using chronic in vivo two-photon calcium imaging in awake mice, we were able for the first time to follow the activity of individual tangle-bearing neurons and compare it to the activity of tangle-free neurons over the disease course. Our results revealed strong reduction of calcium transient frequency in layer 2/3 cortical neurons of P301S mice, independent of neurofibrillary tangle presence. These results clearly point to the impairing role of soluble, mutated tau protein species present in the majority of the neurons investigated in this study.
关键词: neurofibrillary tangles,two-photon imaging,tau,seeding,P301S mice
更新于2025-11-21 11:08:12
-
On-off-on relay fluorescence recognition of ferric and fluoride ions based on indicator displacement in living cells
摘要: A new boronic acid derivative functionalized with a 4-(3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazol-5-yl)phenyl (IOP) moiety was synthesized for use as a sequential “on-off-on”-type relay fluorescence probe for Fe3+ ions and F? ions with high selectivity and sensitivity under physiological conditions. The introduction of Fe3+ to IOP boronic acid (IOPBA) formed an Fe3+-IOPBA complex, which led to quenching of the blue fluorescence intensity at 458 nm. The lowest-energy conformation of IOPBA was theoretically predicted to adopt an extended structure, and the Fe3+ ion in the Fe3+-IOPBA complex was coordinated to two phenyl groups to form a p-complex. Upon addition of F? to the Fe3+-IOPBA complex, the original fluorescence was recovered due to formation of [FeF6]3?, resulting in “on-off-on”-type sensor behavior. IOPBA showed high selectivity towards Fe3+ among other cations. Moreover, the Fe3+-IOPBA complex showed specific selectivity towards F?, with other cations and anions not interfering with detection. Both sensing processes showed 1:1 stoichiometry with binding constants of 6.87 × 106 and 4.49 × 106 mol–1 L for Fe3+ with IOPBA and F? with Fe3+-IOPBA, respectively. The limits of detection for Fe3+ and F? were 10 and 1 nM, respectively. The proposed method was successfully applied in real water samples. Furthermore, the probe had low cytotoxicity and was successfully used as a bioimaging reagent to detect intracellular Fe3+ and F? in living HeLa cells.
关键词: Fluorescence imaging,On-off-on sensor,Probe for Fe3+ ions and F? ions,Living HeLa cells,Boronic acid derivative
更新于2025-11-21 11:08:12