修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • A Novel Multilayer Sandwich Fabric-based Composite Material for Infrared Stealth and Super Thermal Insulation Protection

    摘要: At present, infrared stealth materials for advanced detection and stealth technology is usually prepared with low emissivity coating on the surface, but there are very few efficient infrared stealth materials based on textiles with lightweight and flexible features. In this paper, we designed a carbon nanotube-doped aerogel (CNTAs) sandwich structure on polyimide (PI) fabric by hot pressing and then coated with a low emissivity Al-doped ZnO (ZAO) on the outer surface. The surface emissivity lower than 0.5 due to the existence of ZAO and the thermal conductivity of the intermediate interlayer aerogels as low as 0.013 W/(m?K). Additionally, through experiments, theoretical derivation and simulation analysis, we found the resultant composite demonstrated a high infrared stealth performance with super insulation effect, implying it will have a fine prospect in infrared stealth and thermal insulation protection fields with its unique structure and excellent properties.

    关键词: Carbon Nanotube-doped Aerogel,Sandwich Structure,Infrared Stealth,Polyimide Fabric,Thermal Insulation,Al-doped ZnO

    更新于2025-09-23 15:23:52

  • A fast method for preparing a large diameter, three-dimensional photonic crystal infrared stealth material

    摘要: With the development of infrared detection technology, the threat of infrared detection technology to military targets in the battle?eld is becoming more and more serious. Novel infrared stealth materials are in urgent demand. Photonic crystals are promising infrared stealth materials because they can prohibit the propagation of electromagnetic waves in a certain frequency range. This paper outlines a simple and fast method to fabricate three-dimensional photonic crystals for stealth material. Monodisperse polystyrene colloid microspheres with a particle size of 2 μm were prepared and used in a gas–liquid interface self-assembly to form a three-dimensional photonic crystal infrared stealth material. The infrared absorption peak wavelengths of the material were 3.30 μm and 3.42 μm. The band gap is in good agreement with the photon forbidden band (3.24–3.44 μm) obtained from simulation and calculation using Rsoft software. The material meets the requirements of an infrared stealth material and realizes the modulation of the infrared radiation characteristics of the detectable band of 3–5 μm. The process provides a simple, economical, fast, and e?cient new method for the preparation of large diameter, three-dimensional photonic crystal infrared stealth materials.

    关键词: Photonic crystal,Infrared stealth,Gas/liquid interface self-assembly

    更新于2025-09-23 15:22:29

  • Frequency Selective Surface for Infrared Transmission Suppression at Atmospheric Window

    摘要: A double screen infrared frequency selective surface (FSS) with dual transmission stopbands was proposed and numerically investigated. Simulation results show that the infrared transmittance of the structure is lower than 10% in mid-infrared band (3~5 μm) and far-infrared band(8 ~14 μm).This structure is polarization insensitive to the incident electromagnetic waves. For a wide range of incident angles from 0° to 60°, the infrared transmittance of the structure is still lower than 25% in the band of interest. Compared with black body, the radiation ratio of structure is lower in the MWIR and LWIR ranges. The structure provide the potential applications for infrared stealth.

    关键词: Infrared stealth,Transmission suppression,Atmospheric windows,Frequency selective surface

    更新于2025-09-23 15:21:01

  • Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth

    摘要: Infrared (IR) stealth is essential not only in high technology and modern military but also in fundamental material science. However, effectively hiding targets and rendering them invisible to thermal infrared detectors have been great challenges in past decades. Herein, flexible, foldable, and robust Kevlar nanofiber aerogel (KNA) films with high porosity and specific surface area were fabricated first. The KNA films display excellent thermal insulation performance and can be employed to incorporate with phase-change materials (PCMs), such as polyethylene glycol, to fabricate KNA/PCM composite films. The KNA/PCM films with high thermal management capability and infrared emissivity comparable to that of various backgrounds demonstrate high performance in IR stealth in outdoor environments with solar illumination variations. To further realize hiding hot targets from IR detection, combined structures constituted of thermal insulation layers (KNA films) and ultralow IR transmittance layers (KNA/PCM) are proposed. A hot target covered with this combined structure becomes completely invisible in infrared images. Such KNA/PCM films and KNA?KNA/PCM combined structures hold great promise for broad applications in infrared thermal stealth.

    关键词: thermal management,aerogel,phase-change materials,free-standing films,Kevlar nanofibers,infrared stealth

    更新于2025-09-19 17:15:36