修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • [IEEE 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS) - Beijing (2018.8.19-2018.8.20)] 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS) - Instance Segmentation of Trees in Urban Areas from MLS Point Clouds Using Supervoxel Contexts and Graph-Based Optimization

    摘要: In this paper, an instance segmentation method for tree extraction from MLS data sets in urban scenes is developed. The proposed method utilizes a supervoxel structure to organize the point clouds, and then extracts the detrended geometric features from the local context of supervoxels. Combined with the detrended features of the local context, the Random Forest (RF) classifier will be adopted to obtain the initial semantic labeling results of trees from point clouds. Afterwards, a local context-based regularization is iteratively performed to achieve global optimum on a global graphical model, in order to spatially smoothing the semantic labeling results. Finally, a graph-based segmentation is conducted to separate individual trees according to the semantic labeling results. The use of supervoxel structure can preserve the geometric boundaries of objects in the scene, and compared with point-based solutions, the supervoxel-based method can largely decrease the number of basic elements during the processing. Besides, the introduction of supervoxel contexts can extract the local information of an object making the feature extraction more robust and representative. Detrended geometric features can get over the redundant and in-salient information in the local context, so that discriminative features are obtained. Benefiting from the regularization process, the spatial smoothing is obtained based on initial labeling results from classic classifications such as RF classification. As a result, misclassification errors are removed to a large degree and semantic labeling results are thus smoothed. Based on the constructed global graphical model during the spatially smoothing process, a graph-based segmentation is applied to partition the graphical model for the clustering the instances of trees. The experiments on two test datasets have shown promising results, with an accuracy of the semantic labeling of trees reaching around 0.9. The segmentation of trees using graph-based algorithm also show acceptable results, with trees having simple structures and sparse distributions correctly separated, but for those cramped trees with complex structures, the points are over- or under-segmented.

    关键词: local context,urban areas,supervoxels,MLS,Instance segmentation,graph-based segmentation,trees

    更新于2025-09-23 15:22:29

  • Leveraging Domain Knowledge to Improve Microscopy Image Segmentation With Lifted Multicuts

    摘要: The throughput of electron microscopes has increased significantly in recent years, enabling detailed analysis of cell morphology and ultrastructure in fairly large tissue volumes. Analysis of neural circuits at single-synapse resolution remains the flagship target of this technique, but applications to cell and developmental biology are also starting to emerge at scale. On the light microscopy side, continuous development of light-sheet microscopes has led to a rapid increase in imaged volume dimensions, making Terabyte-scale acquisitions routine in the field. The amount of data acquired in such studies makes manual instance segmentation, a fundamental step in many analysis pipelines, impossible. While automatic segmentation approaches have improved significantly thanks to the adoption of convolutional neural networks, their accuracy lags behind human annotations and requires additional manual proof-reading. A still major hindrance to further improvements is the limited field of view of the segmentation networks preventing them from learning to exploit the expected cell morphology or other prior biological knowledge which humans use to inform their segmentation decisions. In this contribution, we show how such domain-specific information can be leveraged by expressing it as long-range interactions in a graph partitioning problem known as the lifted multicut problem. Using this formulation, we demonstrate significant improvement in segmentation accuracy for four challenging boundary-based segmentation problems from neuroscience and developmental biology.

    关键词: biomedical image analysis,biological priors,instance segmentation,LM segmentation,connectomics,EM segmentation

    更新于2025-09-11 14:15:04