- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Rare earth ions doped NiO hole transport layer for efficient and stable inverted perovskite solar cells
摘要: Hole transport layer plays a critical role in achieving high performance and stable inverted perovskite solar cells (PSCs). Doping has been proved to be an effective strategy to modify the electrical and optical properties of semiconductor oxides. Herein, rare earths (REs: Ce, Nd, Eu, Tb, and Yb) elements are systemically doped into the NiOx hole transport layer (HTL) via a simple solution-based method. The results demonstrate that the REs doping could considerably modify the compactness, conductivity, and band alignment of the NiOx HTL, leading to the highly improved permanence of the inverted PSCs. The PSCs using 3% Eu:NiOx HTL yielded the optimum power conversion efficiency of 15.06%, relatively improved 23.4% compared with the PSC using pristine NiOx HTL (12.20%). It also demonstrated much better long time stability. The improved photovoltaic properties of the device can be attributed to the more efficient charge extraction and suppressed interfacial recombination rate by the introduction of appropriate REs in the NiOx HTL. This work indicates that RE doping is a very effective and promising strategy to achieve adjustable hole extraction material for high and stable inverted PSCs.
关键词: Rare earth ions,Perovskite solar cells,Doped NiOx film,Inverted planar structure
更新于2025-09-19 17:13:59
-
Performance data of CH3NH3PbI3 Inverted Planar Perovskite Solar Cells via Ammonium Halide Additives
摘要: The data provided in this data set is the study of organic-inorganic hybrid perovskite solar cells fabricated through incorporating the small amounts of ammonium halide NH4X (X=F, Cl, Br, I) additives into a CH3NH3PbI3 (MAPbI3) perovskite solution and is published as “High-Performance CH3NH3PbI3 Inverted Planar Perovskite Solar Cells via Ammonium Halide Additives”, available in Journal of Industrial and Engineering Chemistry [1]. A compact and uniform perovskite absorber layer with large perovskite crystalline grains, is realized by simply incorporating small amounts of additives into precursor solutions, and utilizing the anti-solvent engineering technique to control the nucleation and growth of perovskite crystal, turning out the enhanced device efficiency (NH4F: 14.88 ± 0.33 %, NH4Cl: 16.63 ± 0.21 %, NH4Br: 16.64 ± 0.35 %, and NH4I: 17.28 ± 0.15 %) compared to that of a reference MAPbI3 device (Ref.: 12.95 ± 0.48 %). In addition, this simple technique of ammonium halide addition to precursor solutions increase the device reproducibility as well as long term stability.
关键词: perovskite grain size,inverted planar structure,CH3NH3PbI3 perovskite,ammonium halide additives,anti-solvent engineering
更新于2025-09-16 10:30:52
-
High‐Performance Inverted Planar Perovskite Solar Cells Enhanced by Thickness Tuning of New Dopant‐Free Hole Transporting Layer
摘要: A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant-free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost-effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.
关键词: inverted planar structure,perovskite solar cells,dopant-free,hole transporting materials
更新于2025-09-11 14:15:04