修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Surface Modification on Nanoripple-like ZnO Nanorod Arrays Using Two-dimensional (2D) Bi2OS2 to Fabricate High-Performance Inverted Polymer Solar Cells

    摘要: In this paper, three-dimensional (3D) nanoripple-like ZnO nanorod arrays (R-ZnO NRAs) are successfully fabricated and modified by two-dimensional (2D) Bi2OS2 material, and inverted polymer solar cells (IPSCs) with R-ZnO modified by Bi2OS2 as electron transmission layer (ETL) are fabricated for the first time. The results show that the surface morphologies of R-ZnO NRAs can be controlled by adjusting the concentration of the modified 2D Bi2OS2 solution. Bi2OS2 modification can not only suppress the surface defects of R-ZnO NRAs, reduce the recombination of photogenerated charges, but also increase crystallinity of the active layer, resulting in effective electron collection. And thus, the performance of IPSCs is obviously improved. The power conversion efficiency (PCE) of PTB7: PCBM based PSCs with R-ZnO NRAs modified by 2% Bi2O2S as ETL is considerably raised to 7.31% from 5.51%. More interestingly, Bi2OS2 modification enhances IPSCs stability to remain 80.9% of their initial PCE after 80 days, yet IPSCs with pristine R-ZnO NRAs remain only 47.4% of their initial PCE. Moreover, this approach can also successfully improve the performance of another IPSC composed of PBDB-T: ITIC blends. The PCE of the device based on 2% Bi2OS2-modified R-ZnO NRAs is improved to 9.94% from 8.03% of the reference device without Bi2OS2 modification. This work not only provides an effective mean of surface modification of R-ZnO NRAs, but also shows the Bi2OS2 material has potential application in PSCs.

    关键词: Recombination,Bi2OS2 nanosheets,Inverted polymer solar cells,Nanoripple-like ZnO nanorod arrays

    更新于2025-09-23 15:21:01

  • Role of CdSe and CdSe@ZnS quantum dots interlayers conjugated in inverted polymer solar cells

    摘要: We demonstrate the use of CdSe quantum dots (QDs) as an interlayer for improving photovoltaic performance in the inverted polymer solar cells (iPSCs). The conjugation of CdSe and CdSe@ZnS core@shell QDs between polyethylenimine ethoxylated (PEIE) polymer and PTB7:PC71BM blended layer played an important role in increasing the short circuit current density by F€orster resonance energy transfer (FRET) and efficient charge transport. The drastic mutual photoluminescence quenching suggests that the photon energy absorbed by PTB7:PC71BM are effectively transferred to the QDs. The PTB7:PC71BM based iPSCs with the CdSe QDs interlayer exhibits higher power conversion efficiency of 8.13%, which is 13.4% higher than that of the control device. The iPSCs with CdSe@ZnS QDs interlayer showed relatively lower PCE of 7.31%, which could be due to an increase in carrier recombination inside QDs by relatively high energy level of ZnS shell. As a consequence, the enhanced photovoltaic performance of iPSCs with CdSe QDs interlayer can be attributed to an effective charge transport and an increase in the overall photocurrent by FRET.

    关键词: Carrier transport,Resonance energy transfer,Quantum dots,Inverted polymer solar cells,CdSe,Energy level alignment

    更新于2025-09-23 15:21:01

  • Functionalization of fullerene by polyethylene glycol toward promoted electron transport in inverted polymer solar cells

    摘要: A novel polyethylene glycol-functionalized fullerene derivative (C60-PEGA) was synthesized by a facile one-step nucleophilic addition reaction. C60-PEGA possessed good solubility in methanol and was estimated as C60-( C8H18N)13H13O with average PEG moiety of 13 by 1H NMR, FT-IR and X-ray photoelectron spectroscopy (XPS) spectra. C60-PEGA was applied as an ETL to construct inverted bulk heterojunction polymer solar cells (inverted BHJ-PSCs) based on photoactive layers of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]: [6,6]-phenyl-C71-butyric acid methyl ester (PTB7-Th: PC71BM), which achieve the best PCE of 9.25%, surpassing that of reference device based on the ZnO ETL (8.61%). The higher ETL performance of C60-PEGA ETL in BHJ-iPSC device relative to that of the ZnO ETL was attributed to the increase of electron mobility and effective electron transport from the active layer to the ITO cathode because that the reduced work function (WF) of ITO via the modification of C60-PEGA leads to the increase of short-circuit current density (Jsc) and consequent PCE.

    关键词: polyethylene glycol (PEG),electron transport layers (ETLs),inverted polymer solar cells,work function,fullerene derivative

    更新于2025-09-19 17:13:59

  • Solution-processible Cd-doped ZnO nanoparticles as an electron transport layer to achieve high performance polymer solar cells through improve conductivity and light transmittance

    摘要: In this work, electron transport layers (ETLs) with high charge transfer ability were prepared by doping ZnO nanoparticles with different concentrations of cadmium(Cd). The inverted polymer solar cell based on PTB7-Th: PC71BM as active layer and various concentrations Cd-doped ZnO (CZO) as ETLs were fabricated. The PCE of the device with optimized Cd content in the ZnO film was about 14.7% larger than that of the pure ZnO-based cells. The cadmium-doped ZnO(CZO) is a good candidate to be used as a high-quality transparent electrode in solar cell applications.

    关键词: high electrical conductivity,cadmium doping,electron transport layers,ZnO nanoparticles,inverted polymer solar cells

    更新于2025-09-16 10:30:52

  • Comparison of ZnO buffer layers prepared by spin coating or RF magnetron sputtering for application in inverted organic solar cells

    摘要: We compared the electrical, optical, structural, and morphological properties of radio-frequency (RF) magnetron-sputtered ZnO and solution-processed ZnO nanoparticle (NP) buffer layers on ITO cathodes for use in inverted polymer solar cells (IPSCs). Continuous sputtering resulted in integration of the ZnO buffer layer in the ITO cathodes, which were then used as transparent cathodes for IPSCs. Although the electrical, optical, and morphological properties as well as work function of RF-sputtered ZnO film were similar to those of solution-processed ZnO NP film, the power conversion efficiency (PCE) of IPSCs with an RF-sputtered ZnO buffer layer was much lower than that of IPSCs with a solution-processed ZnO NP buffer layer due to vertical phase segregation of the organic active layer. However, intentional bias sweeping of IPSCs with an RF-sputtered ZnO buffer layer improved performance due to diffusion of PC70BM through the PV-D4610 donor layer and formation of a suitable heterojunction structure. Based on transmission electron microscope examination and dark current-voltage curves, we suggest a possible mechanism to explain the difference in behavior of RF-sputtered ZnO and solution-processed ZnO NP buffer layers in IPSCs.

    关键词: ZnO nanoparticles,Vertical phase segregation,Microstructure,Sputtered ZnO,Inverted polymer solar cells,Buffer layer

    更新于2025-09-10 09:29:36