修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

12 条数据
?? 中文(中国)
  • Life cycle sustainability analysis applied to an innovative configuration of concentrated solar power

    摘要: Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a Bquestions and answers^ layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.

    关键词: Multiregional input-output (MRIO),Life cycle assessment (LCA),Concentrated solar power,Sustainability,Electricity generation,Social life cycle assessment (S-LCA),Life cycle sustainability assessment (LCSA)

    更新于2025-09-23 15:22:29

  • Early Alteration of Retinal Neurons in <i>Aipl1</i> <sup>?/?</sup> Animals

    摘要: PURPOSE. Mutations in the photoreceptor cell-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) lead to Leber congenital amaurosis (LCA4), retinitis pigmentosa, and cone–rod dystrophy. Gene therapy appears to be promising in the treatment for AIPL1-mediated vision loss in humans. Prior to initiating these treatments, however, it is crucial to understand how the retinal neurons remodel themselves in response to photoreceptor cell degeneration. In this study, using an animal model for AIPL1-LCA, Aipl1(cid:2)/(cid:2) mice, we investigate the changes in postreceptoral retinal neurons during the course of photoreceptor cell loss. METHODS. Morphology of the Aipl1(cid:2)/(cid:2) retina from postnatal day 8 to 150 was compared to that of age-matched, wild-type C57Bl6/J retina (WT) by immunocytochemistry using cell-specific markers. RESULTS. Expression of postsynaptic proteins in bipolar cells is reduced prior to photoreceptor cell degeneration at postnatal day 8. Bipolar and horizontal cells retract their dendrites. Cell bodies and axons of bipolar and horizontal cells are disorganized during the course of degeneration. M¨uller cell processes become hypertrophic and form a dense fibrotic layer outside the inner nuclear layer. CONCLUSIONS. An early defect in photoreceptor cells in the AIPL1-LCA mouse model affects the expression of postsynaptic markers, suggesting abnormal development of bipolar synapses. Once degeneration of photoreceptor cells is initiated, remodeling of retinal neurons in the Aipl1(cid:2)/(cid:2) animal is rapid.

    关键词: childhood blindness,photoreceptor degeneration,retina,LCA,remodeling

    更新于2025-09-23 15:22:29

  • Environmental impacts and economic feasibility of end of life photovoltaic panels in Australia: A comprehensive assessment

    摘要: The severe challenges of the end-of-life management of photovoltaic panels are predicted to enter its critical stage in Australia from the early 2030s owing to the wide-reaching deployment of PV panels in the past two decades. There appears to be a lack of holistic strategy concerning the environmental impacts of disposal scenarios and also enacting of comprehensive local policy and regulations. As a way forward in the promotion of the sustainable management of this complex waste flow, this study performed an inclusive life cycle assessment utilizing SimaPro 9.0.029, and an economic feasibility analysis employing the Discounted Cash Flow (DCF) method for various scenarios. The performed LCA in this paper highlighted the environmental burden and credit responsibilities of an industrial scale treatment procedure proposed for Australia. Findings from the analysis indicated that the domestic treatment of EoL PV module is feasible and includes high-profit margins while making a considerable reduction on environmental burdens and resource losses. The outcome of the economic feasibility assessment has shown some promising numbers for 20,000 tonnes per year of annual PV waste flow. Hence, the variation of the critical economic factors could not affect the feasibility of the treatment pathway. However, the plant with a yearly capacity of 10,000 tonnes EoL PV panels did not show profitability at any condition unless the Australian government considers a special tax-exemption during the loan lifetime. Finally, this study illuminates toward the sustainable management of EoL PV panels and circular economy pathway by providing useful concrete evidence to the decision-makers.

    关键词: techno-economic analysis,End-of-life PV module,LCA,Waste management,End-of-life photovoltaic,Cost-effective analysis

    更新于2025-09-23 15:19:57

  • Environmental Impact of the High Concentrator Photovoltaic Thermal 2000x System

    摘要: High Concentrator Photovoltaic Thermal (HCPV/T) systems produce both electrical and thermal energy and they are efficient in areas with high Direct Normal Irradiance (DNI). This paper estimates the lifecycle environmental impact of the HCPV/T 2000x system for both electrical and thermal functionalities. Process-based attributional method following the guidelines and framework of ISO 14044/40 was used to conduct the Life Cycle Assessment (LCA). The midpoint and endpoint impact categories were studied. It was found that the main hotspots are the production of the thermal energy system contributing with 50% and 55%, respectively, followed by the production of the tracking system with 29% and 32% and the operation and maintenance with 13% and 7%. The main contributor to the lifecycle environmental impact category indicators was found to be the raw materials acquisition/production and manufacturing of the thermal energy and tracking systems. The results indicate that the lifecycle environmental impact of the HCPV/T 2000x system is lower compared to fuel-based Combined Heat and Power (CHP) and non-Renewable Energy Sources (non-RES) systems.

    关键词: High Concentrator Photovoltaic Thermal (HCPV/T),environmental impacts,Life Cycle Assessment (LCA)

    更新于2025-09-23 15:19:57

  • Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant

    摘要: During the conversion of solar radiation into electricity, photovoltaic installations do not emit harmful compounds into the environment. However, the stage of production and post-use management of their elements requires large amounts of energy and materials. Therefore, this publication was intended to conduct an eco-energy life cycle analysis of photovoltaic power plant materials and components based on the LCA method. The subject of the study was a 1 MW photovoltaic power plant, located in Poland. Eco-indicator 99, CED and IPCC were used as calculation procedures. Among the analyzed elements of the power plant, the highest level of negative impact on the environment was characterized by the life cycle of photovoltaic panels stored at the landfill after exploitation (the highest demand for energy, materials and CO2 emissions). Among the materials of the power plant distinguished by the highest harmful effect on health and the quality of the environment stands out: silver, nickel, copper, PA6, lead and cadmium. The use of recycling processes would reduce the negative impact on the environment in the context of the entire life cycle, for most materials and elements. Based on the results obtained, guidelines were proposed for the pro-environmental post-use management of materials and elements of photovoltaic power plants.

    关键词: recycling,photovoltaics panels,CED,LCA,IPCC,landfill,Eco-indicator 99

    更新于2025-09-23 15:19:57

  • Payback times and multiple midpoint/endpoint impact categories about Building-Integrated Solar Thermal (BIST) collectors

    摘要: The purpose of the present article is the evaluation, by means of life cycle assessment, of a system which consists of vacuum-tube solar thermal collectors. The system is appropriate for building integration and it has been developed in France. The methods ReCiPe and USEtox have been adopted. Regarding life-cycle results, according to the scenario “without recycling” and for 30-year system lifespan, ReCiPe payback time was calculated to be 18.14 years based on France's electricity mix whereas by using Spain's electricity mix (hypothetical scenario) it was found to be 4.03 years. Recycling offers a ReCiPe-payback time reduction of 2.66 years based on France's electricity mix and 0.59 years based on Spain's electricity mix. All the studied cases show ReCiPe payback times much lower than an assumed system-lifespan of 30 years. On the basis of ReCiPe midpoint and by considering material manufacturing of the 16 collectors and the additional elements of the system (scenario “without recycling”), among glass-, aluminium-, copper- and steel-based components, the copper-based ones present the highest impact in 15 of the 18 impact categories. For instance, for Freshwater eutrophication, the copper-based elements have a score that is around 30 times higher comparing to that of the aluminium-based ones. The USEtox ?ndings, for the material manufacturing of the 16 collectors and the supplementary elements of the system and for the scenario “without recycling”, reveal that the material with the highest total score in terms of: i) human toxicity/cancer is copper (6.7E?09 CTUh), ii) human toxicity non-cancer is propylene glycol (4.0E?08 CTUh), iii) ecotoxicity is copper (2.06 CTUe). Recycling of the metals, according to USEtox, offers an impact reduction of 20–95%. A discussion about factors that in?uence the environmental pro?le of building-integrated solar systems is also provided.

    关键词: Vacuum-tube solar thermal collectors,ReCiPe,Building-Integrated Solar Thermal (BIST) system,Life Cycle Assessment (LCA)

    更新于2025-09-19 17:15:36

  • Storage systems for building-integrated photovoltaic (BIPV) and building-integrated photovoltaic/thermal (BIPVT) installations: Environmental profile and other aspects

    摘要: In recent years there has been an increasing interest in Building-Integrated Photovoltaic (BIPV) and Building-Integrated Photovoltaic/Thermal (BIPVT) systems since they produce clean energy and replace conventional building envelope materials. By taking into account that storage is a key factor in the effective use of renewable energy, the present article is an overview about storage systems which are appropriate for BIPV and BIPVT applications. The literature review shows that there are multiple storage solutions, based on different kinds of materials (batteries, Phase Change Material (PCM) components, etc.). In terms of BIPV and BIPVT with batteries or PCMs or water tanks as storage systems, most of the installations are non-concentrating, fa?ade- or roof-integrated, water- or air-based (in the case of BIPVT) and include silicon-based PV cells, lead-acid or lithium-ion batteries, paraffin- or salt-based PCMs. Regarding parameters that affect the environmental profile of storage systems, in the case of batteries critical factors such as material manufacturing, accidental release of electrolytes, inhalation toxicity, flammable elements, degradation and end-of-life management play a pivotal role. Regarding PCMs, there are some materials that are corrosive and present fire-safety issues as well as high toxicity in terms of human health and ecosystems. Concerning water storage tanks, based on certain studies about tanks with volumes of 300 L and 600 L, their impacts range from 5.9 to 11.7 GJprim and from 0.3 to 1.0 t CO2.eq. Finally, it should be noted that additional storage options such as Trombe walls, pebble beds and nanotechnologies are critically discussed. The contribution of the present article to the existing literature is associated with the fact that it presents a critical review about storage devices in the case of BIPV and BIPVT applications, by placing emphasis on the environmental profile of certain storage materials.

    关键词: ecotoxicity,Building-Integrated Photovoltaic/Thermal (BIPVT),embodied energy,Human toxicity,Life Cycle Assessment (LCA),CO2 emissions,Building-Integrated Photovoltaic (BIPV),Storage materials

    更新于2025-09-19 17:13:59

  • Assessing the sustainability of emerging technologies: A probabilistic LCA method applied to advanced photovoltaics

    摘要: A key source of uncertainty in the environmental assessment of emerging technologies is the unpredictable manufacturing, use, and end-of-life pathways a technology can take as it progresses from lab to industrial scale. This uncertainty has sometimes been addressed in life cycle assessment (LCA) by performing scenario analysis. However, the scenario-based approach can be misleading if the probabilities of occurrence of each scenario are not incorporated. It also brings about a practical problem; considering all possible pathways, the number of scenarios can quickly become unmanageable. We present a modelling approach in which all possible pathways are modelled as a single product system with uncertain processes. These processes may or may not be selected once the technology reaches industrial scale according to given probabilities. An uncertainty analysis of such a system provides a single probability distribution for each impact score. This distribution accounts for uncertainty about the product system’s final configuration along with other sources of uncertainty. Furthermore, a global sensitivity analysis can identify whether the future selection of certain pathways over others will be of importance for the variance of the impact score. We illustrate the method with a case study of an emerging technology for front-side metallization of photovoltaic cells.

    关键词: sustainability assessment,LCA,uncertainty,global sensitivity analysis,Life cycle assessment,emerging technologies

    更新于2025-09-19 17:13:59

  • Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case Study Applied with PROMETHEE Methodology

    摘要: The technological change to LEDs is an unstoppable reality which, little by little, is becoming increasingly important in terms of the lighting inside and outside our homes. The exterior lighting of our cities is moving decisively and clearly towards the incorporation of this technology in urban spaces. The energy efficiency, light quality, and economic benefits of LED technology are an unquestionable reality. This is causing public administration projects involving large-scale switches to LEDs to be promoted and financed; however, it is beginning to be observed that the commitment to the policies decided by this technology should take into account some environmental aspects which have not been studied to date. The environmental impact of the substitutions is caused by the need to valorize the replaced luminaires. Until now, most have been stored without the possibility of use, reuse, or recovery. The environmental impact produced in the manufacture of LED luminaires that replace the old sodium vapor (VSAP) or metal halide (MH) discharge lamps must also be considered. In addition, in the administrative clauses specifications that govern the public tenders, it is observed that the fundamental environmental aspects both of recycling the old lamps, and of the life cycle analysis (LCA) of the luminaires that are replacing them, have not been contemplated or valued with sufficient weight. In addition, there are very few public substitution contests in which environmental criteria are rewarded or valued in an important way. This work intends to summarize a methodological proposal using the techniques of multiple decision-making criteria for the selection of bidding companies for public outdoor lighting competitions. We propose the use of the PROMETHEE method multi-criteria analysis for the application of the most commonly used criteria for the luminaire LED selection process, including an environmental impact assessment with LCA techniques, and propose this as a case or model guide in the public contests of cities. A model of the bidding conditions that addresses and assesses the environmental aspects which are absolutely key to sustainable development is supported by the ecological criteria of the circular economy.

    关键词: environmental criteria,circular economy,Life cycle assessment LCA,lighting pollution,lighting public tender,PROMETHEE,recycling waste,LED luminaires,decision tool,streetlight waste

    更新于2025-09-16 10:30:52

  • Treatment of Spent LED Light Bulbs for Recycling of Its Components: A Combined Assessment in the Context of LCA and Cost-Benefit Analysis

    摘要: Recently, the demand for LED light bulbs is rapidly increasing due to an increasing demand for energy saving lightning options. In this work, the elemental composition of LED light bulbs is first analyzed, and then a flowsheet for recovering LED chips and other valuable metals from spent LED light bulbs is put forward. The suggested flowsheet includes eddy current separation (ECS) and air tabling, in addition to several refining processes. The experimental results indicated that the eddy current separation and the air tabling are useful techniques for sorting components of LED bulbs, enabling the recycling of aluminium, plastics, and precious metals, such as gold and silver. Next, five different scenarios for treatment of spent LED light bulbs were considered and a combined life cycle assessment (LCA) and cost-benefit analysis was carried out to find out the most suitable alternative. The results of the combined assessment suggested that the recycling of mainly Al and plastics from spent LED bulbs is an environmentally friendly and cost-effective alternative.

    关键词: Magnetic separation,Density separation,LCA,REE,LED

    更新于2025-09-12 10:27:22