修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

37 条数据
?? 中文(中国)
  • A high power laser facility to conduct annealing tests at high temperature

    摘要: The knowledge of material properties and their behavior at high temperatures is of crucial importance in many fields. For instance, annealing phenomena occurring during the thermomechanical processing of materials, such as recrystallization, have long been recognized as being both of scientific interest and technological importance. Different methods are currently used to study annealing phenomena and submit metals to heat loads. In this work, we present the design and the development of a laser-based facility for annealing tests. This experimental setup enables studies at the laboratory scale with great flexibility to submit samples to various spatial and temporal heating profiles. Due to the possibility of having optical access to the sample, laser heating can be combined with several non-contact diagnostics such as infrared imaging to control and analyze the temperature gradients. As a case study, we present a set of experiments performed to study the recrystallization kinetics of tungsten. We demonstrate that samples can be heated linearly with heating rate up to ~2000 K/s, at temperatures above 2000 K, for seconds or hours, with typical errors in the temperature measurement of around 1% that depend mainly on the determination of sample emissivity. Such studies are of crucial interest in the framework of nuclear fusion since the international thermonuclear experimental reactor nuclear reactor will operate with a full-W divertor.

    关键词: tungsten,laser annealing,nuclear fusion,high temperature,recrystallization

    更新于2025-09-19 17:13:59

  • Laser induced ultrafast combustion synthesis of solution-based AlO <sub/>x</sub> for thin film transistors

    摘要: Solution processing of amorphous metal oxides using excimer laser annealing (ELA) has been lately used as a viable option to implement large-area electronics, offering high quality materials at a reduced associated cost and process time. However, the research has been focused on semiconductor and transparent conductive oxide layers rather than on the insulator layer. In this work we present amorphous aluminum oxide (AlOx) thin films produced at low temperature (≤150 °C) via combustion synthesis triggered by ELA, for oxide thin film transistors (TFTs) suitable for manufacturing flexible electronics. The study showed that combining ELA and combustion synthesis leads to an improvement in the dielectric thin film’s densification in a shorter time (≤15 min). Optimized dielectric layers were obtained combining a short drying cycle at 150 °C followed by ELA treatment. High breakdown voltage (4 MV cm?1) and optimal dielectric constant (9) was attained. In general, TFT devices comprising the AlOx fabricated with a drying cycle of 15 min followed by ELA presented great TFT properties, a high saturation mobility (20.4 ± 0.9 cm2 V?1 s?1), a small subthreshold slope (0.10 ± 0.01 V dec?1) and a turn-on voltage ≈0 V. ELA is shown to provide excellent quality solution-based high-k AlOx dielectric, that surpass other methods, like hot plate annealing and deep ultraviolet (DUV) curing. The results achieved are promising and expected to be of high value to the printed electronic industry due to the ultra-fast film densification and the surface/area selective nature of ELA.

    关键词: thin film transistors,excimer laser annealing,solution processing,amorphous metal oxides,combustion synthesis,flexible electronics

    更新于2025-09-19 17:13:59

  • Laser annealing towards high-performance monolayer MoS2 and WSe2 field effect transistors

    摘要: The transition metal dichalcogenides (TMDCs) have been intensively investigated as one of promising nanoelectronic and optoelectronic materials. However, the pervasive adsorbates on the surface of monolayer TMDCs, including oxygen and water molecules from the ambient environments, predominately degrade the device performance, thus hindering the precise applications. In this work, we report the effect of laser irradiation on the transport and photoresponse of monolayer MoS2 and WSe2 devices, and this laser annealing process is demonstrated as one straightforward approach to remove the physically adsorbed contaminations. Compared with vacuum pumping and in-situ thermal annealing treatments, the field-effect transistors after the laser annealing show more than one order of magnitude higher on-state current, and no apparent degradation of device performance at low temperature. The mobility of monolayer WSe2 devices can be enhanced by 3-4 times, and for single-layered MoS2 devices with the commonly used SiO2 as the back-gate, the mobility increases by 20 times, reaching 37 cm2 ? V?1 ? s?1. The efficient cleaning effect of the laser annealing is also supported by the reduction of channel and contact resistances revealed by the transmission line experiment. Further, the enhanced photocurrent by a factor of 10 has been obtained in the laser annealed device. These findings pave the way for the high-performance monolayer TMDCs-based electronic and optoelectronic devices with the clean surface and intrinsic properties.

    关键词: TMDCs,monolayer MoS2,photoresponse,field-effect transistors,laser annealing,monolayer WSe2

    更新于2025-09-19 17:13:59

  • Macroscopic Alignment of Block Copolymers on Silicon Substrates by Laser Annealing

    摘要: Laser annealing is a competitive alternative to conventional oven annealing of block copolymer (BCP) thin films enabling rapid acceleration and precise spatial control of the self-assembly process. Localized heating by a moving laser beam (zone annealing), taking advantage of steep temperature gradients, can additionally yield aligned morphologies. In its original implementation it was limited to specialized germanium-coated glass substrates, that absorb visible light and exhibit low-enough thermal conductivity to facilitate heating at relatively low irradiation power density. Here, we demonstrate a recent advance in laser zone annealing, which utilizes a powerful fiber-coupled near-IR laser source allowing rapid BCP annealing over a large area on conventional silicon wafers. The annealing coupled with photothermal shearing yields macroscopically-aligned BCP films which are used as templates for patterning metallic nanowires. We also report a facile method of transferring laser-annealed BCP films onto arbitrary surfaces. The transfer process allows patterning substrates with a highly corrugated surface and single-step rapid fabrication of multilayered nanomaterials with complex morphologies.

    关键词: laser annealing,photothermal processing,block copolymers,nanopatterning,directed self-assembly,multilayers

    更新于2025-09-19 17:13:59

  • Chemical Bonding States and Dopant Redistribution of Heavily Phosphorus-doped Epitaxial Silicon Films: Effects of Millisecond Laser Annealing and Doping Concentration

    摘要: We investigated the effect of millisecond (ms) laser annealing and doping concentration on the chemical bonding states and dopant behaviors of P-doped epitaxial Si (Si:P) layers grown on Si (100) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS), secondary-ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES) measurements. Our XPS results showed that the intensities of P 2p peaks for Si:P films were increased with P concentration and subsequent laser annealing. From the SIMS and AES measurement results, we found that P atoms were slightly accumulated at the near-surface region of the Si:P film by the laser annealing, while macroscopic P concentration being maintained in the whole Si:P films without significant diffusion of P atoms toward the Si (100) substrate. In addition, we performed ex-situ HF cleaning on the as-grown and laser-annealed Si:P films in order to precisely measure the change in chemical states and dopant distribution at the near-surface region. The intensities of the P 2p peak in the as-grown Si:P films were increased after the HF cleaning due to the removal of native oxide layers from the Si:P films. In contrast, the decrease in P 2p peak intensities was observed in the laser-annealed Si:P films after the HF cleaning, indicating the dopant loss from the near-surface region with native oxide removal.

    关键词: Millisecond laser annealing,Dopant redistribution,Chemical bonding states,Phosphorus-doped epitaxial silicon films,Doping concentration

    更新于2025-09-19 17:13:59

  • Ultraviolet Nanosecond Laser Annealing for Low Temperature 3D-Sequential Integration Gate Stack

    摘要: For the top tier in a 3D sequential integration, we propose a low temperature gate first approach in which an in-situ doped amorphous silicon layer is deposited at 475°C then subsequently converted into a polycrystalline film using ultraviolet nanosecond laser annealing. We demonstrate the ability to obtain a low resistance poly-Si gate for the top transistors within a thermal budget expected to preserve the bottom devices electrical performance.

    关键词: Ultraviolet Nanosecond Laser Annealing,Polycrystalline Silicon,3D-Sequential Integration,Low Temperature Gate Stack

    更新于2025-09-16 10:30:52

  • Laser Annealing Simulations of Metallisations Deposited on 4H-SiC

    摘要: Based on the finite elements method, thermal simulations were conducted to reproduce a laser annealing of several metals deposited on 4H-SiC. We estimated the temperature reached at the metal/4H-SiC interface to find out the best conditions to achieve ohmic contact formation through laser annealing. An optimization of Al/Ti/4H-SiC stacking was also considered. Simulations highlighted the low temperature of the non-irradiated SiC face that allows using grinded wafer.

    关键词: 4H-SiC,Laser annealing,Simulation,Ohmic contact

    更新于2025-09-16 10:30:52

  • Nano-to-micro diamond formation by nanosecond pulsed laser annealing

    摘要: Here, we report the synthesis and characterization of nano-, micro-, twinned, and lonsdaleite diamonds, which are formed after melting and quenching of amorphous carbon or Q-carbon essentially at room temperature and atmospheric pressure. These conversions depend on the degree of undercooling, which is controlled by the laser parameters and thermal conductivities of the amorphous carbon and the substrate. The laser melting and undercooling provide liquid-phase packing of atoms similar to high-pressure, which facilitate the conversion of amorphous carbon into diamond or Q-carbon without using any catalyst. By changing the nucleation and growth rates, we have synthesized a wide range of sizes (4 nm to 3 μm) of diamond crystals. The formation of twinned and lonsdaleite diamonds is controlled by the quenching rate. Therefore, we have created a “factory of diamonds” at ambient conditions by nanosecond laser annealing, which will pave the pathway to design high-speed mechanical and electrical devices.

    关键词: diamond formation,nanosecond pulsed laser annealing,Q-carbon,nano-to-micro diamonds,undercooling

    更新于2025-09-16 10:30:52

  • [IEEE 2018 22nd International Conference on Ion Implantation Technology (IIT) - Würzburg, Germany (2018.9.16-2018.9.21)] 2018 22nd International Conference on Ion Implantation Technology (IIT) - Super Activation of Highly Surface Segregated Dopants in High Ge Content SiGe Obtained by Melt UV Laser Annealing

    摘要: Activation of surface segregated dopants above the solid solubility limit in a high Ge content SiGe substrate has been demonstrated by nanosecond melt UV laser anneal. This exceeds the activation possible with conventional solid-phase annealing technics. The segregation effects, strongly amplified by the phase changing of the partial melting of the sample during the annealing, play a key role explaining dopant profile redistribution in Si-Ge alloys and activation.

    关键词: contact,activation,segregation,laser annealing

    更新于2025-09-16 10:30:52

  • [IEEE 2019 IEEE SENSORS - Montreal, QC, Canada (2019.10.27-2019.10.30)] 2019 IEEE SENSORS - Room temperature gas sensors based on laser-annealed ZnO nanostructures for gaseous pollutants detection

    摘要: To effectively control gaseous pollutants in air it is mandatory to fabricate reliable and non-expensive monitoring systems that can be easily deployed in urban areas. Sensing devices based on metal oxide nanostructures offer many advantages respect bulk material in detecting multiple hazardous gases such as, high stability, easy surface functionalization and temperature. Among diverse potentially nanostructures, ZnO nanorods can be obtained with low cost and simple process at a low manufacturing temperature opening the possibility to integrate the material with flexible substrates. Additionally, laser annealing procedure can be exploited to improve or tune the morphology and the electrical properties of these materials. In this work, we present a comparison between the performance of as deposited and laser-annealed devices in the detection of NO and NO2. Different sensors characteristics at increasing gas concentrations and dynamic behaviors are shown and discussed evaluating the mechanisms involved in the diverse pollutant detection. As result, the laser-annealed sensor exhibits a sensitivity one-order higher respect to as-grown sample in detecting NO (3.9x10-3 vs 2.7x10-4 [1/ppm]) while for NO2 sensitivity is more than four times higher (3.8x10-3 vs 8.4x10-4 [1/ppm]).

    关键词: ZnO nanostructures,gaseous pollutants,room temperature gas sensing,laser annealing

    更新于2025-09-16 10:30:52