修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

12 条数据
?? 中文(中国)
  • [IEEE 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) - Berlin, Germany (2019.7.23-2019.7.27)] 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - A System for Combined Laser Doppler Flowmetry and Microelectrode Recording during Deep Brain Stimulation Implantation

    摘要: Microelectrode recording (MER) and intraoperative test stimulations are commonly used during stereotactic implantation of deep brain stimulation (DBS) electrodes but they can increase the risk of hemorrhage. The aim of the study is to present and evaluate a system combining laser Doppler flowmetry (LDF) and MER. An optical probe was designed with an inner metal tube for the microelectrode. Calibration of the MER-LDF probe in a standard microsphere solution showed expected LDF pattern. No interferences of the MER probe with the LDF signals could be observed. LDF was also acquired in one Parkinson patient undergoing DBS implantation. LDF data were obtained along the precalculated trajectory i.e. from cortex towards the target in the subthalamic nucleus (STN). Results demonstrated the technical feasibility of the combined MER-LDF probe during in-vitro experiences and in one patient. The perfusion signal representing the microcirculation showed stable values with clear peaks from each heartbeat. This agreed with previous investigation using an optical probe without the MER function. Due to the forward-looking probe design, this new technology has a high potential to avoid vessels during MER recording. In addition, it could be possible to detect changes in microcirculatory blood flow during stimulation.

    关键词: stereotactic surgery,Microelectrode recording,laser Doppler flowmetry,deep brain stimulation,microcirculation

    更新于2025-09-11 14:15:04

  • Different lasers reveal different skin microcirculatory flowmotion - data from the wavelet transform analysis of human hindlimb perfusion

    摘要: Laser Doppler flowmetry (LDF) and reflection photoplethysmography (PPG) are standard technologies to access microcirculatory function in vivo. However, different light frequencies mean different interaction with tissues, such that LDF and PPG flowmotion curves might have distinct meanings, particularly during adaptative (homeostatic) processes. Therefore, we analyzed LDF and PPG perfusion signals obtained in response to opposite challenges. Young healthy volunteers, both sexes, were assigned to Group 1 (n = 29), submitted to a normalized Swedish massage procedure in one lower limb, increasing perfusion, or Group 2 (n = 14), submitted to a hyperoxia challenge test, decreasing perfusion. LDF (Periflux 5000) and PPG (PLUX-Biosignals) green light sensors applied distally on both lower limbs recorded perfusion changes for each experimental protocol. Both techniques detected the perfusion increase with massage, and the perfusion decrease with hyperoxia, in both limbs. Further analysis with the wavelet transform (WT) revealed better depth-related discriminative ability for PPG (more superficial, less blood sampling) compared with LDF in both challenges. Spectral amplitude profiles consistently demonstrated better sensitivity for LDF, especially regarding the lowest frequency components. Strong correlations between components were not found. Therefore, LDF and PPG flowmotion curves are not equivalent, a relevant finding to better study microcirculatory physiology.

    关键词: Laser Doppler flowmetry,perfusion,photoplethysmography,wavelet transform,microcirculatory function

    更新于2025-09-11 14:15:04