- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of laser texturing on the performance of ultra-hard single-point cutting tools
摘要: This paper investigates the cutting performance and anti-adhesive properties of textured single-point polycrystalline diamond (PCD) cutting tools in machining Aluminium 6082 alloys. The micro/nano textures were first milled using a fibre laser (1064-nm wavelength) at different power intensities, feed speeds and pulse durations, and finally characterised using scanning electron microscopy, white light interferometry and energy dispersive X-ray spectroscopy. The effect of different textures on the cutting performance was investigated in turning tests under dry cutting conditions. The test was stopped at regular lengths of cut to allow analysis of height of adhesion through 3D white light interferometry. The data processing of the cutting forces and the microscopical characterisation of the tested cutting tools enabled the evaluation of the effects of texture design, friction coefficient and adhesive properties. The results indicated that feed force in tools with grooves perpendicular to the chip flow direction (CFD) was more stable (20–40 N) than the benchmark (6–41 N). Similarly, the thrust force for tools with grooves parallel to CFD and grooves perpendicular to CFD showed a homogeneous trend fluctuating between 60 and 75 N as compared with the benchmark (ranging between 73 and 90 N). For texture depth in the order of 260 nm and post process roughness in the order of tens of nanometers, a reduction of average friction coefficient (0.28 ± 0.14) was reported when using lasered inserts with grooves parallel to the chip flow direction compared with the benchmark tools (0.34 ± 0.26) corroborated by reduced stiction of workpiece material on the rake face. In machining via textured tools with grooves perpendicular to CFD, the cutting forces were reduced by 23%, and the surface quality of the machined workpiece was improved by 11.8%, making this geometry the preferred choice for finishing applications. Using grooves parallel to CFD reduced the cutting forces by 11.76%, adhesion by 59.36% and friction coefficient by 14.28%; however, it increased the surface roughness of the machined workpiece, making this geometry suitable for roughing operations. For the first time, laser manufacturing is proposed as a flexible technique to functionalise the geometrical and wear properties of PCD cutting tools to the specific applications (i.e. roughing, finishing) as opposed to the standard industrial approach to use microstructurally different PCDs (i.e. grain size and binder %) based on the type of operation.
关键词: Adhesion,Dry cutting,Nanosecond pulse,Laser milling,Polycrystalline diamond insert,Laser surface texturing,Cutting forces
更新于2025-09-16 10:30:52
-
Machinability of titanium alloy through laser machining: material removal and surface roughness analysis
摘要: Laser milling is a competent precision process especially when the work material is hard-to-machine such as titanium alloys. While performing the laser milling, a slight change in one of the laser parameters results in an abrupt change in the machining outcomes. A close match between the designed and the machined geometries is the essence of precision machining. A precise control over the material removal rate per laser scan is highly desirable but difficult to achieve. The difficulty level becomes higher if high surface finish is desired alongside the precision machining. In this research, the objective was set to perform the laser milling on titanium alloy (Ti-6Al-4V) with 100% control over material removal rate (MRR) per laser scan and minimum surface roughness (SR). Influence of the five laser parameters (laser intensity, pulse frequency, scan speed, layer thickness, and track displacement) on MRR and SR has been deeply investigated. Significance of each laser parameter is evaluated through ANOVA. Mathematical models for both the responses are developed to estimate the resulting responses at any parametric setting. Models have also been validated through confirmatory tests. Optimization of laser parameters is of great importance to remove the material exactly equal to the desired depth with minimum surface roughness. Therefore, the optimized combinations of laser parameters have been proposed which ensure the conformance of 100% MRR and minimum surface roughness with composite desirability > 0.9. Confirmatory experiments revealed that the optimized parameters are capable to produce the laser milling results as per the models’ predicted results. Additionally, the microstructure of the subsequent layers below the milled area has also been examined and compared with the microstructure of the bulk Ti-6Al-4V. By the use of optimized parameters, microstructure of the sub-layers remains unchanged as compared with the microstructure of the base metal. No evidence has been found altering the microstructure of the sub-layers.
关键词: Laser milling,Titanium alloy,Mathematical model,Surface roughness (SR),Optimization,Material removal rate (MRR)
更新于2025-09-16 10:30:52
-
Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs-ps) pulses
摘要: Ultrashort pulse laser, capable of varying pulse duration between 210 fs and 10 ps and producing a burst of pulses with an intra-burst pulse repetition rate of 64.5 MHz (time distance between pulses 15.5 ns), was used to investigate the ablation efficiency of the copper. The study on ablation efficiency was done for various numbers of pulses per burst between 1 and 40. The increase in the ablation efficiency by 20% for 3 pulses per burst compared to a non-burst regime was observed. The comparison was made between the beam-size optimised regimes. Therefore, the real advantage of the burst regime was demonstrated. To the best of our knowledge, we report the highest laser milling ablation efficiency of copper of 4.84 μm3/μJ by ultrashort pulses at ~1 μm optical wavelength.
关键词: ultrashort pulse laser,laser milling,ablation efficiency,copper ablation,burst mode
更新于2025-09-11 14:15:04