修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

68 条数据
?? 中文(中国)
  • Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting

    摘要: Although different kinds of metal materials have been built in the past years, it is difficult to fabricate the components of copper alloys with high strength and high conductivity due to their high reflectivity and thermal conductivity. In this paper, Cu-Cr alloy with high strength and high conductivity was successfully manufactured by high laser power selective laser melting. The microstructure, mechanical properties and conductivity were studied and compared before and after the heat treatment. The microstructure of the as-built sample was columnar grains with very fine cellular sub-structures and precipitates of Cr and Cr2O3. After heat treatment, the Cr particles precipitated from Cu matrix, resulting in simultaneous increase in strength and conductivity. The ultimate tensile strength of 468 MPa, yield strength of 377.33 MPa, and electrical conductivity of 98.31% IACS were achieved, which is even better than the samples fabricated by rolling with post heat treatment.

    关键词: Cu-Cr alloy,Electronic conductivity,Laser processing,Microstructure,Mechanical properties

    更新于2025-11-28 14:24:20

  • Effect of pre-existing nuclei on crystallization during laser welding of Zr-based metallic glass

    摘要: In this study, experiments are carried out in laser welding of a Zr-based (Zr52.5Ti5Al10Ni14Cu17.9) bulk metallic glass (BMG), pre-existing nuclei nucleus density has significant influence on its crystallization behavior. Based on the classical nucleation/growth theory, it is concluded that a small amount of pre-existing nuclei in a BMG can shift the time-temperature-transformation (TTT) curve from a well-known ‘C-shape’ to a ‘ε-shape.’ This result provides fundamental understanding on why the shape of the TTT curve for a heating process is different from that for a cooling process for the same BMG. Two quality factors were defined as a measure of the effect of pre-existing nucleus density. By integrating the classical nucleation/growth theory with the heat transfer model, the evolution of crystalline phase during laser welding for a BMG with pre-existing nuclei was studied, and the modeling predictions compared favorably with the experimental results.

    关键词: Crystallization,Nucleation and growth,Laser processing,Metallic glasses,Amorphous alloys

    更新于2025-11-28 14:24:20

  • Effect of thermal stress induced by femtosecond laser on fracture toughness of fine-grained alumina

    摘要: The ultra-sharp V-notch with tip radius smaller than 0.5 μm was cut by femtosecond laser on the fine-grained alumina ceramic bars to measure the fracture toughness by single-edge V-notched beam (SEVNB) method. In order to relieve the effect of thermal stresses induced by laser on fracture toughness testing, the samples with V-notch were annealed before measurement. The morphologies of the notch tip were analyzed by SEM and micro-Raman spectra. Results reveal that the fracture toughness value of this fine-grained alumina with thermal stresses on the V-notch is equal to that after annealing, and the effect of thermal stresses induced by laser on the fracture toughness can be ignored.

    关键词: SEVNB,Fracture toughness,Laser processing,Thermal stress,Alumina

    更新于2025-11-21 11:18:25

  • Tailored focal beam shaping and its application in laser material processing

    摘要: Besides the optimization of the laser and processing parameters, the adaptation of the focal intensity distribution offers great potential for a well-defined control of laser processing and for improving the processing results. In this paper, different tailored intensity distributions were discussed with respect to their suitability for femtosecond laser material processing on the micro- and nanoscale such as cutting, marking, and the generation of laser-induced periodic surface structures. It was shown by means of laser processing of stainless steel that the numerical simulations for the beam shaping unit are in good agreement with the experimental results. Also, the suitability of the beam shaping device to work with a scanner and an F-theta lens as commonly used for material processing was demonstrated. In this context, the improvement of the machining results was shown experimentally, and a significant reduction of the machining time was achieved.

    关键词: laser-induced periodic surface structures,donut,femtosecond laser processing,top-hat,beam shaping

    更新于2025-11-21 11:01:37

  • Laser-induced graphitized periodic surface structure formed on tetrahedral amorphous carbon films

    摘要: Femtosecond laser-induced periodic surface structure (LIPSS), graphitization and swelling observed on ultra-hard, hydrogen-free tetrahedral amorphous carbon (ta-C) films are examined and compared with those on hydrogenated amorphous carbon (a-C:H) films, nitride films, and glassy carbon plates. The threshold fluence for LIPSS formation on ta-C is approximately twice as high as that for other specimens, and the LIPSS period Λ near the threshold is very fine at ca. 80 nm. Λ gradually increases with increasing fluence, and rapidly increases to ca. 600 nm at a high fluence. The ablation rate also increases rapidly at this fluence. In addition, ta-C and a-C:H are graphitized by irradiation and expand in volume. The surface layer of ta-C film changes to nanocrystalline graphite as the fluence increases and the crystallinity is improved; however, at higher fluence, the crystallinity deteriorates suddenly similar to that at low fluence. At high fluence, the rapid increase in Λ and the ablation rate, and the sudden deterioration in crystallinity are determined as common phenomena for these disordered carbons. LIPSS formation and swelling over a large area by scanned spot irradiation produces submicron height flat hills with conductivity and surface functionality on the insulating surface.

    关键词: Graphitization,Swelling,Laser-induced periodic surface structure,Femtosecond-laser processing,Nanocrystalline graphite,Tetrahedral amorphous carbon

    更新于2025-09-23 15:21:01

  • Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etching

    摘要: This paper analyzes laser and etching parameters to fabricate open and continuous microchannels and stacks of such microchannels in the bulk of crystalline sapphire (??-Al2O3). The structures are produced using a two-step method consisting of laser irradiation and selective etching. Infrared femtosecond laser pulses are focused in the bulk to locally render the crystalline material into amorphous. The amorphous material is, then, selectively etched in hydrofluoric acid. Amorphous sapphire shows a high etching selectivity in comparison to its crystalline state, which makes this material very attractive for a use with this technique. However, some of its properties make the processing challenging, especially during the laser-induced amorphization phase. This paper studies the effect of laser parameters by a step-by-step approach to fabricate long structures (longest dimensions up to millimeters) of different shapes inside the bulk of sapphire. The minimum cross-sectional dimensions of the resulting structures (microchannels) vary from few hundreds of nanometers for the smallest channels to tens of micrometers for the largest stacks of microchannels. The effect of the variation of repetition rate, pulse energy and channel-to-channel distance on the microchannels and stacks of microchannels is studied. SEM micrographs of polished cross-sections are used for performing a quantitative and qualitative analysis of the morphology of the structures after laser irradiation and, subsequently, after selective wet chemical etching.

    关键词: Selective etching,Laser processing,Microchannels,Femtosecond laser,Sapphire

    更新于2025-09-23 15:21:01

  • Surface functionalization by laser-induced periodic surface structures

    摘要: In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others.

    关键词: applications,laser processing,surface functionalization,laser-induced periodic surface structures (LIPSS)

    更新于2025-09-23 15:21:01

  • Achieving strong friction lap joints of carbon-fiber reinforced plastic and metals by modifying metal surface structure via laser-processing pretreatment

    摘要: Strong dissimilar joints of metals and carbon fiber reinforced plastic (CFRP) are highly demanded for the lightweight design in many fields, which, however, are rather challenging to achieve directly via welding. In this study, 5052 Al alloy and plain carbon steel were first pretreated by a laser-processing method to create rather coarse porous metal surfaces, which were then welded to polyamide 6 based CFRP using friction lap joining. The maximum tensile shear force of the dissimilar joints of CFRP-Al alloy and CFRP-steel achieved 4.9 kN, and 3.9 kN, respectively, and the joint efficiency achieved 78% and 62%, respectively, which were more than three times as those of the CFRP- as-received metal joints. This is the first report on the strengthening of the metal-CFRP friction based joints via the assisting laser treatment technique. The significant improvement of the joint strength could be attributed to a great increase of the mechanical anchors and the chemical bonding area at the metal-CFRP interface.

    关键词: Metal,Laser processing,Mechanical interlocking,Dissimilar joining,Friction stir welding,Carbon-fiber reinforced plastic

    更新于2025-09-23 15:21:01

  • Generating Silicon Nanofiber Clusters from Grinding Sludge by Millisecond Pulsed Laser Irradiation

    摘要: Silicon nano?ber clusters were successfully generated by the irradiation of millisecond pulsed laser light on silicon sludge disposed from wafer back-grinding processes. It was found that the size, intensity, and growing speed of the laser-induced plume varied with the gas pressure, while the size and morphology of the nano?bers were dependent on the laser pulse duration. The generated nano?bers were mainly amorphous with crystalline nanoparticles on their tips. The crystallinity and oxidation degree of the nano?bers depended on the preheating conditions of the silicon sludge. This study demonstrated the possibility of changing silicon waste into functional nanomaterials, which are possibly useful for fabricating high-performance lithium-ion battery electrodes.

    关键词: laser processing,sludge waste,silicon nano?ber,material reuse,nanostructure

    更新于2025-09-23 15:21:01

  • Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser

    摘要: An ultrafast laser was used to ablate the surface of stainless steel. Periodical surface micro-textures including micro-grooves, micro-pits and micro/nano-ripples were successfully fabricated. As a typical reactive wetting system, Al-Si alloy was used to study the wetting and spreading behaviors on the laser patterned surfaces of stainless steel. The results showed that initial, rapid spreading and gradient balance stages were found in the spreading process. By comparing to the primitive surface, Al-Si alloy exhibited worse wettability on the surface with micro-grooves and micro-pits because of the geometrical characteristics and nano-scale oxides residuals after laser processing; however, Al-Si alloy showed better wettability on the surface with micro/nano-ripples owing to the formation of micro/nano hierarchically patterns and the resultant improved capillary actions. The interfacial reaction layer formed during wetting and spreading processes were also investigated. The surface micro-textures were found to enhance the interfacial metallurgical reactions, thus increasing the thickness of the reaction layer. This work provides a new method to improve the wettability, spreadability and metallurgical reactions of Al-Si/stainless steel reactive wetting system and may extend its use in other reactive wetting systems. This method may be able to improve brazing, soldering, coating and other processes involving solid/liquid interfacial interactions.

    关键词: Reactive wetting system,Wetting and spreading,Intermetallic compounds,Ultrafast laser processing,Surface micro-textures

    更新于2025-09-23 15:21:01