- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Extinction and optical depth retrievals for CALIPSO's Version 4 data release
摘要: The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been making near-global height-resolved measurements of cloud and aerosol layers since mid-June 2006. Version 4.10 (V4) of the CALIOP data products, released in November 2016, introduces extensive upgrades to the algorithms used to retrieve the spatial and optical properties of these layers, and thus there are both obvious and subtle differences between V4 and previous data releases. This paper describes the improvements made to the extinction retrieval algorithms and illustrates the impacts of these changes on the extinction and optical depth estimates reported in the CALIPSO lidar level 2 data products. The lidar ratios for both aerosols and ice clouds are generally higher than in previous data releases, resulting in generally higher extinction coefficients and optical depths in V4. A newly implemented algorithm for retrieving extinction coefficients in opaque layers is described and its impact examined. Precise lidar ratio estimates are also retrieved in these opaque layers. For semi-transparent cirrus clouds, comparisons between CALIOP V4 optical depths and the optical depths reported by MODIS collection 6 show substantial improvements relative to earlier comparisons between CALIOP version 3 and MODIS collection 5.
关键词: retrieval algorithms,clouds,CALIOP,lidar,optical depth,CALIPSO,aerosols,extinction,version 4
更新于2025-09-23 15:22:29
-
CALIPSO lidar calibration at 1064 nm: version 4 algorithm
摘要: Radiometric calibration of space-based elastic backscatter lidars is accomplished by comparing the measured backscatter signals to theoretically expected signals computed for some well-characterized calibration target. For any given system and wavelength, the choice of calibration target is dictated by several considerations, including signal-to-noise ratio (SNR) and target availability. This paper describes the newly implemented procedures used to calibrate the 1064 nm measurements acquired by CALIOP (i.e., the Cloud-Aerosol Lidar with Orthogonal Polarization), the two-wavelength (532 and 1064 nm) elastic backscatter lidar currently flying on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. CALIOP’s 532 nm channel is accurately calibrated by normalizing the molecular backscatter from the uppermost aerosol-free altitudes of the CALIOP measurement region to molecular model data obtained from NASA’s Global Modeling and Assimilation Office. However, because CALIOP’s SNR for molecular backscatter measurements is prohibitively lower at 1064 nm than at 532 nm, the direct high-altitude molecular normalization method is not a viable option at 1064 nm. Instead, CALIOP’s 1064 nm channel is calibrated relative to the 532 nm channel using the backscatter from a carefully selected subset of cirrus cloud measurements. In this paper we deliver a full account of the revised 1064 nm calibration algorithms implemented for the version 4.1 (V4) release of the CALIPSO lidar data products, with particular emphases on the physical basis for the selection of “calibration quality” cirrus clouds and on the new averaging scheme required to characterize intra-orbit calibration variability. The V4 procedures introduce latitudinally varying changes in the 1064 nm calibration coefficients of 25 % or more, relative to previous data releases, and are shown to substantially improve the accuracy of the V4 1064 nm attenuated backscatter coefficients. By evaluating calibration coefficients derived using both water clouds and ocean surfaces as alternate calibration targets, and through comparisons to independent, collocated measurements made by airborne high spectral resolution lidar, we conclude that the CALIOP V4 1064 nm calibration coefficients are accurate to within 3 %.
关键词: calibration,lidar,CALIPSO,version 4 algorithm,cirrus clouds,1064 nm
更新于2025-09-23 15:22:29
-
Applications of Cell-Ratio Constant False-Alarm Rate Method in Coherent Doppler Wind Lidar
摘要: A cell-ratio constant false-alarm rate (CR-CFAR) method for detecting the Doppler frequency shift is proposed to improve the accuracy of velocity measured by coherent Doppler wind lidar (CWL) in low signal-to-noise ratio (SNR) environments. The method analyzes the spectrum to solve issues of weak signal submergence in noise encountered in the widely used periodogram method. This characteristic is that the signal region slope is larger than the noise region slope in the frequency spectrum. We combined the ratio and CFAR to propose the CR-CFAR method. The peak area is discriminated from the spectrum using this method. By removing background noise, the peak signal is obtained along with the Doppler shift. To verify the CR-CFAR method, a campaign experiment using both CWL and a commercial Doppler lidar was performed in Hami, China (42°32' N, 94°03' E) during 1–7 June 2016. The results showed that the proposed method significantly improved the reliability of CWL data under low SNR conditions. The height—at which both horizontal wind speed correlativity and horizontal wind direction correlativity exceeded 0.99—increased by 65 m. The relative deviation of the horizontal wind speed at 120 m decreased from 40.37% to 11.04%. We used the CR-CFAR method to analyze continuous data. A greater number of wind field characteristics were obtained during observation compared to those obtained using the common wind field inversion method.
关键词: coherent Doppler wind lidar,cell-ratio constant false alarm rate (CR-CFAR),signal-to-noise ratio (SNR)
更新于2025-09-23 15:22:29
-
Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges
摘要: Individual mangrove tree parameters are necessary for the efficient management and protection of this unique ecosystem, but to measure them using remote sensing (RS) is still a new and challenging task due to the high clumping density of mangrove crowns and the relatively low spatial resolution of RS data. Unmanned aerial vehicles (UAVs), as an emerging RS technique, significantly improves the spatial resolution, but has not been used for individual mangrove analysis. This study presents the first investigation into the possibility of individual tree detection and delineation (ITDD) for mangroves using light detection and ranging (LiDAR) data (91 pt./m2) collected from UAV. Specifically, we aim to detect and measure tree height (TH) and crown diameter (CD) of each mangrove tree, and analyze the impact of crown clumping density and spatial resolution on mangrove ITDD. To this end, we combined the variable window filtering method and marker controlled watershed segmentation algorithm, and successfully delineated 46.0% of the 126 field measured mangroves. This was promising considering the complexity of mangrove forest. TH and CD were estimated with higher accuracies than previous studies. The isolated trees, with the lowest clumping density, were delineated with the highest accuracy. To identify the optimal spatial resolution of canopy height model (CHM), we defined four spatial resolutions (0.1 m, 0.25 m, 0.5 m, and 1 m) and conducted a simulation. Based on the results, we propose a rule-of-thumb that the spatial resolution should be finer than one-fourth of CD for ITDD, which is also applicable to other forest types. The main difficulty for mangrove ITDD is an overall under-detection of trees, which is caused by the high clumping density and limited height difference between adjacent mangroves. We recommend combining UAV LiDAR with imagery and terrestrial LiDAR to improve the mangrove ITDD performance.
关键词: LiDAR,Unmanned aerial vehicle,Mangrove,Individual crown,Optimal spatial resolution
更新于2025-09-23 15:22:29
-
Advances in Microclimate Ecology Arising from Remote Sensing
摘要: Microclimates at the land–air interface affect the physiological functioning of organisms which, in turn, influences the structure, composition, and functioning of ecosystems. We review how remote sensing technologies that deliver detailed data about the structure and thermal composition of environments are improving the assessment of microclimate over space and time. Mapping landscape-level heterogeneity of microclimate advances our ability to study how organisms respond to climate variation, which has important implications for understanding climate-change impacts on biodiversity and ecosystems. Interpolating microclimate measurements and downscaling macroclimate provides an organism-centered perspective for studying climate–species interactions and species distribution dynamics. We envisage that mapping of microclimate will soon become commonplace, enabling more reliable predictions of species and ecosystem responses to global change.
关键词: microclimate,ecology,vegetation structure,climate change,remote sensing,biodiversity,thermal imaging,LiDAR
更新于2025-09-23 15:22:29
-
Autonomous Landing Control of Highly Flexible Aircraft based on Lidar Preview in the Presence of Wind Turbulence
摘要: This paper investigates preview-based autonomous landing control of a highly ?exible ?ying wing model using short range Lidar wind measurements in the presence of wind turbulence. The preview control system is developed based on a reduced-order linear aeroelastic model and employs a two-loop control scheme. The outer loop employs the LADRC (linear active disturbance rejection control) and PI algorithms to track the reference landing trajectory and vertical speed, respectively, and to generate the attitude angle command. This is then used by the inner-loop using H∞ preview control to compute the control inputs to the actuators (control ?aps and thrust). A landing trajectory navigation system is designed to generate real-time reference commands for the landing control system. A Lidar (light detection and ranging) simulator is developed to measure the wind disturbances at a distance in front of the aircraft, which are provided to the inner-loop H∞ preview controller as prior knowledge to improve control performance. Simulation results based on the full-order nonlinear ?exible aircraft dynamic model show that the preview-based landing control system is able to land the ?ying wing effectively and safely, showing better control performance than the baseline landing control system (without preview) with respect to landing effectiveness and disturbance rejection. The control system’s robustness to measurement error in the Lidar system is also demonstrated.
关键词: H∞ preview control,Highly ?exible aircraft,Lidar wind measurements,turbulence landing,autonomous landing control
更新于2025-09-23 15:22:29
-
An Improved Top-Hat Filter with Sloped Brim for Extracting Ground Points from Airborne Lidar Point Clouds
摘要: Airborne light detection and ranging (lidar) has become a powerful support for acquiring geospatial data in numerous geospatial applications and analyses. However, the process of extracting ground points accurately and effectively from raw point clouds remains a big challenge. This study presents an improved top-hat filter with a sloped brim to enhance the robustness of ground point extraction for complex objects and terrains. The top-hat transformation is executed and the elevation change intensity of the transitions between the obtained top-hats and outer brims is inspected to suppress the omission error caused by protruding terrain features. Finally, the nonground objects of complex structures, such as multilayer buildings, are identified by the brim filter that is extended outward. The performance of the proposed filter in various environments is evaluated using diverse datasets with difficult cases. The comparison of the proposed filter with the commercial software Terrasolid TerraScan and other popular filtering algorithms demonstrates the applicability and effectiveness of this filter. Experimental results show that the proposed filter has great promise in terms of its application in various types of landscapes. Abrupt terrain features with dramatic elevation changes are well preserved, and diverse objects with complicated shapes are effectively removed. This filter has minimal omission and commission error oscillation for different test areas and thus demonstrates a stable and reliable performance in diverse landscapes. In addition, the proposed algorithm has high computational efficiency because of its simple and efficient data structure and implementation.
关键词: point cloud,top-hat transformation,mathematical morphology,filtering,lidar
更新于2025-09-23 15:22:29
-
Quantifying Airborne Lidar Bathymetry Quality-Control Measures: A Case Study in Frio River, Texas
摘要: Airborne Lidar Bathymetry (ALB) is an advanced and effective technology for mapping water bodies and measuring water depth in relatively shallow inland and coastal zones. The concept of using light beams to detect and traverse water bodies has been around since the 1960s; however, its popularity has increased significantly in recent years with the advent of relatively affordable hardware, supplemented with potent software applications to process and analyze resulting data. To achieve the most accurate final product, which is usually a digital elevation model (DEM) of the bottom of a water body, various quality-control (QC) measures are applied during and after an airborne mission. River surveys, in particular, present various challenges, and quantifying the quality of the end product requires supplemental surveys and careful analysis of all data sets. In this article, we discuss a recent ALB survey of the Frio River in Texas and summarize the findings of all QC measures conducted. We conclude the article with suggestions for successful ALB deployments at similar survey locations.
关键词: quality management,environmental conditions,uncertainties,Lidar bathymetry
更新于2025-09-23 15:22:29
-
Vertical fine structure and time evolution of plasma irregularities in the Es layer observed by a high-resolution Ca+ lidar
摘要: The vertical fine structures and the time evolution of plasma irregularities in the sporadic E (Es) layer were observed via calcium ion (Ca+) density measurements using a resonance scattering lidar with a high time-height resolution (5 s and 15 m) at Tachikawa (35.7°N, 139.4°E) on December 24, 2014. The observation successfully provided clearer fine structures of plasma irregularities, such as quasi-sinusoidal height variation, localized clumps, “cats-eye” structures, and twist structures, in the sporadic Ca+ (Ca+s) layers at around 100 km altitude. These fine structures suggested that the Kelvin–Helmholtz instabilities occurred in the neutral atmosphere whose density changed temporarily or spatially. The maximum Ca+ density in the Ca+s layer was two orders of magnitude smaller than the maximum electron density estimated from the critical frequency (foEs) simultaneously observed by the ionosonde at Kokubunji (35.7°N, 139.5°E). A strong positive correlation with a coefficient of 0.91 suggests that Ca+ contributes forming the Es layer as well as major metallic ions Fe+ and Mg+ in the lower thermosphere. Moreover, the formation of a new Ca+s layer at 110 km and the upward motions of the Ca+s layers at 100 km and 110 km were observed just after the sunrise time at the conjugation point. Although the presence or absence of a causal relationship with the sunrise time was not clear, a possible explanation for the formation and the upward motions of the Ca+s layers was the occurrence of strong horizontal wind, rather than the enhancement of the eastward electric field.
关键词: Calcium ion (Ca+) density,Ion upward flow,Mid-latitude,Resonance scattering lidar,Kelvin–Helmholtz instability,Sporadic E (Es) layer,Vertical fine structure,Lower thermosphere
更新于2025-09-23 15:22:29
-
Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection
摘要: Light detection and ranging (LiDAR) systems based on silicon single-photon avalanche diodes (SPAD) offer several advantages, like the fabrication of system-on-chips with a co-integrated detector and dedicated electronics, as well as low cost and high durability due to well-established CMOS technology. On the other hand, silicon-based detectors suffer from high background light in outdoor applications, like advanced driver assistance systems or autonomous driving, due to the limited wavelength range in the infrared spectrum. In this paper we present a novel method based on the adaptive adjustment of photon coincidence detection to suppress the background light and simultaneously improve the dynamic range. A major disadvantage of fixed parameter coincidence detection is the increased dynamic range of the resulting event rate, allowing good measurement performance only at a specific target reflectance. To overcome this limitation we have implemented adaptive photon coincidence detection. In this technique the parameters of the photon coincidence detection are adjusted to the actual measured background light intensity, giving a reduction of the event rate dynamic range and allowing the perception of high dynamic scenes. We present a 192 × 2 pixel CMOS SPAD-based LiDAR sensor utilizing this technique and accompanying outdoor measurements showing the capability of it. In this sensor adaptive photon coincidence detection improves the dynamic range of the measureable target reflectance by over 40 dB.
关键词: system-on-chip (SoC),single-photon avalanche diode (SPAD),CMOS,light detection and ranging (LiDAR),time-of-flight (TOF),background light rejection
更新于2025-09-23 15:22:29