- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A magnetofluorescent boron-doped carbon dots as a metal-free bimodal probe
摘要: High-resolution observation of biological process is vital for biological researches and diagnosing diseases, which requires accurate diagnosis that involves coordinating imaging technologies such as fluorescence and magnetic resonance (MR). Nowadays, metal-based labels have been used for dual modality imaging. However, heavy metal ions are not environment-and organism-friendly. Therefore, it is a desirable to fabricate a metal-free label with fluorescence and MR properties. Herein, we synthesized boron–doped carbon dots (B–CDs) with dual modal properties through a one-pot solvothermal process. Compared with boron-free CDs, B–CDs exhibited apparent red-shift, higher fluorescence intensity, and higher longitudinal relaxivity (r1 = 5.13 mM-1 s-1). It demonstrated that boron doping can enhance the fluorescence intensity of CDs, and maybe lead to form paramagnetic centers. The fluorescence and MR imaging of B–CDs make them a prospective label for clinical applications as a result of their oversimplified synthesis process, low cost, good biocompatibility and low toxicity. It will open a new window for building novel imaging labels.
关键词: Boron,Magnetic resonance,Fluorescence,Carbon dots
更新于2025-11-14 17:03:37
-
Fano-like resonance in large-area magnetic metamaterials fabricated by nanoimprint technique title
摘要: We experimentally and theoretically investigated the Fano-like resonance in large-area magnetic metasurfaces fabricated by nanoimprint lithography technique based on elaborately designed Ag-SiN-Ag configuration. Asymmetric line shape is revealed in reflection spectrum of the magnetic metamaterials. The physical mechanism is elucidated through dispersion relation and electromagnetic field distribution analysis. Both the measured and calculated dispersion relation tell that there are magnetic resonance modes and surface lattices modes coexisting in the magnetic metamaterials, their coupling leads to the asymmetric profile in the reflection spectrum. The calculated electromagnetic field distribution further consolidate the coupling phenomenon in the magnetic metamaterials. This work might significantly prompt the applications of metamaterials in sensing, lasing, and optical devices designing.
关键词: SPP,magnetic resonance,Fano Resonance,surface lattice resonance,magnetic metamaterials
更新于2025-09-23 15:23:52
-
Optical Sensing of Broadband RF Magnetic Field Using a Micrometer-Sized Diamond
摘要: High-resolution ?eld imaging with minimized invasiveness is of growing interest with the development of radio frequency (RF) integrated circuits and planar antenna characterization. In this paper, we propose an optical broadband sensor with static offset magnetic ?eld using a diamond crystal that contains an ensemble of nitrogen-vacancy (NV) centers. The spatial resolution of micrometer scale is demonstrated by using a diamond crystal of this size. This technique is based on the modulation of ?uorescence emitting by NV center under green laser excitation, by an off-axis magnetic ?eld at radio frequencies. We demonstrate experimentally the detection of an RF magnetic ?eld, with minimum measurable amplitude on the order of 0.1 Gauss, which is limited by the noise ?oor of the avalanche photodetector. The sensitivity can be further improved by noise suppression in optics. The bandwidth of the sensor is measured to be 15 MHz.
关键词: near-?eld imaging,magnetic ?eld,magnetic resonance,Instrumentation and measurement,real time,laser
更新于2025-09-23 15:23:52
-
Positron emission tomography/computed tomography outperforms MRI in the diagnosis of local recurrence and residue of nasopharyngeal carcinoma: An update evidence from 44 studies
摘要: Studies on nasopharyngeal carcinoma (NPC) in five electronic databases were systematically searched online from the inception to June 5, 2018. Quality of the included studies was assessed using the updated Quality Assessment of Diagnostic Accuracy Studies 2. Data of sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the 95% confidence intervals were pooled using a bivariate random‐effect model. Forty‐four studies with 61 groups of data and totally 3369 patients were included in the qualitative and quantitative synthesis analysis. The overall estimated sensitivity and specificity of positron emission tomography/computed tomography/magnetic resonance imaging (PET‐CT/MRI) for local recurrent/residual NPC were 0.90 and 0.85, respectively. The pooled area under the curve of (AUC) of PET‐CT/MRI in the summary receiver operator characteristic curve was 0.94. Subgroup analysis showed MRI vs PET‐CT had lower sensitivity (0.83 vs 0.92) and specificity (0.78 vs 0.89). The AUCs of MRI and PET‐CT were 0.87 and 0.96, respectively. No‐cross of 95% CI was found in MRI vs PET/CT (0.87‐0.90 vs 0.94‐0.98). Meta‐regression showed PET/CT vs MRI was a potential source of heterogeneity. PET/CT and MRI both showed quite high overall ability in diagnosing local recurrent/residual NPC, but the subgroup analysis indicated PET‐CT was superior over MRI in diagnosis of local recurrence and residue of NPC after radiotherapy. The examination methods affected the heterogeneity within studies.
关键词: specificity,positron emission tomography/computed tomography,sensitivity,magnetic resonance imaging,recurrence/residue,nasopharyngeal carcinoma
更新于2025-09-23 15:23:52
-
Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer
摘要: Objectives This study aimed to predict the molecular subtypes of breast cancer via intratumoural and peritumoural radiomic analysis with subregion identification based on the decomposition of contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods The study included 211 women with histopathologically confirmed breast cancer. We utilised a completely unsupervised convex analysis of mixtures (CAM) method by unmixing dynamic imaging series from heterogeneous tissues. Each tumour and the surrounding parenchyma were thus decomposed into multiple subregions, representing different vascular characterisations, from which radiomic features were extracted. A random forest model was trained and tested using a leave-one-out cross-validation (LOOCV) method to predict breast cancer subtypes. The predictive models from tumoural and peritumoural subregions were fused for classification. Results Tumour and peritumour DCE-MR images were decomposed into three compartments, representing plasma input, fast-flow kinetics, and slow-flow kinetics. The tumour subregion related to fast-flow kinetics showed the best performance among the subregions for differentiating between patients with four molecular subtypes (area under the receiver operating characteristic curve (AUC) = 0.832), exhibiting an AUC value significantly (p < 0.0001) higher than that obtained with the entire tumour (AUC = 0.719). When the tumour- and parenchyma-based predictive models were fused, the performance, measured as the AUC, increased to 0.897; this value was significantly higher than that obtained with other tumour partition methods. Conclusions Radiomic analysis of intratumoural and peritumoural heterogeneity based on the decomposition of image time-series signals has the potential to more accurately identify tumour kinetic features and serve as a valuable clinical marker to enhance the prediction of breast cancer subtypes.
关键词: Magnetic resonance imaging,Diagnostic imaging,Breast neoplasms
更新于2025-09-23 15:23:52
-
Development of an Aptamer-Conjugated Polyrotaxane-Based Biodegradable Magnetic Resonance Contrast Agent for Tumor-Targeted Imaging
摘要: Gadolinium-based magnetic resonance imaging (MRI) contrast agents with biodegradability, biosafety, and high efficiency are highly desirable for tumor diagnosis. Herein, a biodegradable, AS1411-conjugated, α-cyclodextrin polyrotaxane-based MRI contrast agent (AS1411-G2(DTPA-Gd)-SS-PR) was developed for targeted imaging of cancer. The polyrotaxane-based contrast agent was achieved by the complexation of α-cyclodextrin (α-CD) and a linear poly(ethylene glycol) (PEG) chain containing disulfide linkages at two terminals. The disulfides enable the de-threading of the polyrotaxane into excretable small units due to cleavage of the disulfide linkages by reducing agents such as intracellular glutathione (GSH). Furthermore, the second-generation lysine dendron conjugated with gadolinium chelates and AS1411, a G-quadruplex oligonucleotide that has high binding affinity to nucleolin generally presenting a high level on the surface of tumor cells, coupled to the α-CD via click chemistry. The longitudinal relaxivity of AS1411-G2(DTPA-Gd)-SS-PR (11.7 mM?1 s?1) was two times higher than the clinically used Gd-DTPA (4.16 mM?1 s?1) at 0.5 T. The in vitro degradability was confirmed by incubating with 10 mM 1,4-Dithiothreitol (DTT). Additionally, the cytotoxicity, histological assessment and gadolinium retention studies showed that the prepared polyrotaxane-based contrast agent had a superior biocompatibility and was predominantly cleared renally without long-term accumulation toxicity. Importantly, AS1411-G2(DTPA-Gd)-SS-PR displayed the enhanced performance in MRI of breast cancer cells in vitro as well as a subcutaneous breast tumor in vivo due to the targeting ability of AS1411 aptamer. The enhanced performance was due to efficient multivalent interactions with tumor cells, producing faster accumulation and longer contrast imaging time at the tumor site. This work clearly confirms that the specially designed and fabricated α-CD-based polyrotaxane is a promising contrast agent with excellent contrast imaging performance and biosafety for tumor MR imaging.
关键词: AS1411 aptamer,biodegradability,polyrotaxanes,magnetic resonance imaging,breast cancer targeting
更新于2025-09-23 15:23:52
-
[IEEE 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) - Paris (2018.7.8-2018.7.13)] 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) - Tattoo Inks EM Characterization for MRI Interaction Evaluation
摘要: The lack of knowledge about the safety implications of tattooed individuals subjected to Magnetic Resonance Imaging (MRI) may, sometimes, lead to an exaggerate reaction from physicians such as the avoidance of the exam for tattooed patients. To explore the actual risks, in this work, the magnetic and electrical properties of five different tattoo inks have been measured to investigate their interaction with the MRI electromagnetic (EM) fields. Results highlight that the magnetic and electrical behaviour strongly depend on the type of analyzed ink. Magnetic measurements also reveal a different response between the ink solutions and the relative pigments.
关键词: Magnetic Resonance Imaging,electrochemical impedance,magnetization measurements,tattoo ink,Electrical conductivity,tattoo pigment
更新于2025-09-23 15:23:52
-
<sup>125</sup> Te nuclear magnetic resonance and impedance spectroscopy study of topological insulator Bi <sub/>2</sub> Te <sub/>3</sub> nanoparticles mixed with insulating Al <sub/>2</sub> O <sub/>3</sub> nanoparticles
摘要: We have studied topological insulator Bi2Te3 nanoparticles mixed with insulating Al2O3 nanoparticles by means of 125Te nuclear magnetic resonance (NMR) and impedance spectroscopy. Our 125Te NMR lineshape measurements revealed the Knight shift of a satellite peak that increased with the mixing ratio of the Al2O3 nanoparticles, indicating that the mixing increases the surface-to-volume ratio of the Bi2Te3 nanoparticles. It is also shown that the impedance spectroscopy can be employed as a simple and effective means of distinguishing the surface electrical properties of the topological insulators in general.
关键词: surface electrical properties,topological insulator Bi2Te3 nanoparticles,125Te nuclear magnetic resonance,impedance spectroscopy
更新于2025-09-23 15:23:52
-
Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques
摘要: Background: Optical coherence tomography (OCT) is an intravascular, high-resolution imaging technique that is used to characterize atherosclerotic plaques. However, the identification of macrophages as important markers of inflammation and plaque vulnerability remains difficult. Here, we investigate whether the uptake of very small iron oxide particles (VSOP) in macrophages, that cluster in phagolysosomes and allow high-quality magnetic resonance imaging (MRI) of atherosclerotic plaques, and uptake of ferumoxytol nanoparticles enhance detection of macrophages by OCT. Materials and methods: RAW 264.7 macrophage cells were incubated with VSOP (1 and 2 mM Fe) that have been clinically tested and ferumoxytol (8.9 mM Fe) that is approved for iron deficiency treatment and currently investigated as an MRI contrast agent. The light scattering of control macrophages, nanoparticle-labeled macrophages (2,000,000 in 500 μL) and nanoparticle suspensions was measured in synchronous wavelength scan mode using a fluorescence spectrophotometer. For OCT analyses, pellets of 8,000,000 non-labeled, VSOP-labeled and ferumoxytol-labeled RAW 264.7 macrophages were imaged and analyzed on an OPTIS? OCT imaging system. Results: Incubation with 1 and 2 mM VSOP resulted in uptake of 7.1±1.5 and 12±1.5 pg Fe per cell, which increased the backscattering of the macrophages in spectrophotometry 2.5- and 3.6-fold, whereas incubation with 8.9 mM Fe ferumoxytol resulted in uptake of 6.6±2 pg Fe per cell, which increased the backscattering 1.5-fold at 700 nm. In contrast, backscattering of non-clustered nanoparticles in suspension was negligible. Accordingly, OCT imaging could visualize significantly increased backscattering and signal attenuation of nanoparticle-labeled macrophages in comparison with controls. Conclusion: We conclude that VSOP and, to a lesser extent, ferumoxytol increase light scattering and attenuation when taken up by macrophages and can serve as a multimodal imaging probe for MRI and OCT to improve macrophage detection in atherosclerotic plaques by OCT in the future.
关键词: intravascular,magnetic resonance imaging,multimodal imaging,optical coherence tomography,vulnerability,inflammation
更新于2025-09-23 15:22:29
-
Abnormal regional spontaneous neural activity in visual pathway in retinal detachment patients: a resting-state functional MRI study
摘要: Objective: The aim of the study was to investigate changes of brain neural homogeneity in retinal detachment (RD) patients using the regional homogeneity (ReHo) method to understand their relationships with clinical features. Materials and methods: A total of 30 patients with RD (16 men and 14 women), and 30 healthy controls (HCs) (16 men and 14 women) closely matched in age and sex were recruited. Resting-state functional magnetic resonance imaging scans were performed for all subjects. The ReHo method was used to investigate the brain regional neural homogeneity. Patients with RD were distinguished from HCs by receiver operating characteristic curve. The relationships between the mean ReHo signal values in many brain regions and clinical features in RD patients were calculated by Pearson correlation analysis. Results: Compared with HCs, RD patients had significantly decreased ReHo values in the right occipital lobe, right superior temporal gyrus, bilateral cuneus and left middle frontal gyrus. Moreover, we found that the mean ReHo signal of the bilateral cuneus showed positive relationships with the duration of the RD (r=0.392, P=0.032). Conclusion: The RD patients showed brain neural homogeneity dysfunction in the visual pathway, which may underline the pathological mechanism of RD patients with acute vision loss. Besides, the ReHo values can reflect the progress of the RD disease.
关键词: resting state,functional magnetic resonance imaging,retinal detachment,neural regional homogeneity
更新于2025-09-23 15:22:29