- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD)
摘要: The present work is focused on spectroscopic study of four samples of Argan wooden artifact pertaining to the 17th, 18th, 20th and 21st centuries. The objective is to characterize their unknown structures by the study of their non degraded parts and to investigate changes occurred in their degraded parts due to the natural degradation process. Attenuated total re?ectance Fourier transform infrared spectroscopy gauges the presence of many functional groups related to cellulose I and/or II (OH, C–O–C and –CH2), hemicelluloses (particularly C?O (cid:2)1), and lignin (OH phenolic, Car-O and C?Car) and provides qualitative information on the state of wood alteration by informing on the evolution of new former C?O bands. The degree of conversion to carbonyl group, especially quinone or p-quinone at 1650 cm (cid:2)1, is correlated to lignin degradation, while the absence of the C?O acetoxy absorption is ascribable to occurred deterioration in hemicelluloses, and (cid:2)1. X-ray diffraction determines the presence of two forms of cellulose; amorphous cellulose at 18.5(cid:3) 2θ and predominant crystalline cellulose Iβ at 2θ ? 22.6(cid:3) which characterized by an intense peak. The decrease of crystallinity index values con?rms the deterioration level and obvious changes in crystallinity level. However, the microcrystalline structure appears unaltered because no signi?cant changes were observed for calculated cristallite seize. The obtained results depend on the prolonged time of ageing, natural deterioration phenomena, and wood part (internal or external) that is exposed to degradation. The combination of these two methods is useful for an accurate estimation of the degradation level of argan wood.
关键词: Chemistry,Argan wood artifact,XRD,Analytical chemistry,Natural product chemistry,Materials Chemistry,Natural degradation,Archaeology,ATR-FTIR spectroscopy,Crystallinity,Lignocelluloses,Structural characterization,Materials Science,Organic chemistry
更新于2025-09-12 10:27:22
-
A DFT study on functionalization of acrolein on Ni-doped (ZnO)6 nanocluster in dye-sensitized solar cells
摘要: In this work, the functionalization of Acrolein on the Nickel-doped Zn6O6 (A-NiZn5O6) nanocluster with different adsorption configurations (C, M1 & M2) as the π conjugated bridging in dye-sensitized solar cells (DSSC) compared with the anchoring group [6,6] - phenyl-C61-butyric acid methyl ester (PCBM) have been investigated through (DFT/TD-DFT)) calculations by Gaussian 09 program. The interaction between the NiZn5O6 and the Acrolein has been explored through three functional groups are ? O Carbonyl group (C), –CH Methyl group (M1), and –CH2 Methylene group (M2) of the Acrolein. The nature of the interaction between the Acrolein and NiZn5O6 has been exhaustively studied in terms of energy gap (Eg), global reactivity descriptors, molecular geometries, adsorption energy, the density of states, Mulliken atomic charges, molecular electrostatic potential, and the UV-Vis spectra for each adsorption site. The frontier molecular orbital analysis study indicated that all dyes could give a suitable electron vaccination from the LUMO orbital of A-NiZn5O6 to the HOMO orbital of PCBM. The adsorption process significantly improved the incident photon to the current conversion potency of the A-NiZn5O6. The determination of density functional theory calculations revealed that the C site of A-NiZn5O6 material was faced with a lower chemical hardness and energy gap (Eg) as well as a higher electron accepting power and light harvesting efficiency compared to other sites.
关键词: Optics,Theoretical chemistry,Adsorption,DFT,Density of states,Nanotechnology,NiZn5O6,DSSC,Materials chemistry
更新于2025-09-12 10:27:22
-
Precisely Controlled Microsphere Design via Visible‐Light Cross‐Linking of Functional Prepolymers
摘要: A new strategy for particle synthesis is enabled by utilizing modern synthetic, polymer, and photochemical techniques to facilitate the synthesis of highly narrow–disperse multifunctional microspheres from visible-light induced crosslinking of prepolymers in both a single and dual polymer system. The approach requires no stabilizers, bases, or initiators, and proceeds at ambient temperature to yield microspheres with a tunable size range (0.25–5 μm) in less than 4 h, depending largely on solvent composition, but also polymer concentration (2–10 mg mL?1), ratio, and irradiation intensity (3–20 W). Critically, the visible-light induced dimerization reaction exploited herein enables simple functional particle syntheses via a single polymer system. Underpinned by an in-depth kinetic analysis of the particle formation as well as a detailed small molecule study, the mechanism for particle formation is also elucidated. Importantly, inherent advantages of the system are exploited for surface functionalization of residual acrylate and hydroxyl groups (generating inherently fluorescent particles).
关键词: polymer chemistry,photochemistry,materials chemistry,precipitation polymerization,particle synthesis
更新于2025-09-11 14:15:04
-
A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60
摘要: This work studied the role of gold nanoparticles (AuNPs) with different spherical sizes mixed with poly (3, 4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) as a hole transfer layer to enhance the efficiency (ITO/PEDOT:PSS (AuNPs)/CuPc/C60/Al) organic photovoltaic cell (OPV). AuNPs were synthesized using the thermochemical method and the results of the transmission electron microscope (TEM) images showed that the gold nanoparticles mostly dominated by spherical shapes and sizes were calculated in the range (12–23 nm). Measurements of UV-VIS spectra for AuNPs have shown that the surface plasmon resonance shifted to a higher wavelength with decreasing the particle size. Surface morphology and absorption spectra of OPV cells were studied using atomic force microscope and UV-VIS spectrometer techniques. The efficiency of the OPV cell was calculated without and with AuNPs. Efficiency was increased from 0.78% to 1.02% due to the embedded of AuNPs with (12 nm) in PEDOT/PSS. The increase in the light absorption in CuPc is due to the good transparent conducting of PEDOT:PSS and the increase in the electric field around AuNPs embedded in PEDOT:PSS and inbuilt electric field at the interfacial between CuPc and C60 is due to the surface plasmon resonance of AuNPs. The increase in these two factors increase the exciton generation in CuPc, dissociation at the interfacial layer, and charge carrier transfer which increases the collection of electrons and holes at cathode and anode.
关键词: Copper phthalocyanine,PEDOT:PSS,Solar cell,Gold nanoparticles,Materials chemistry,Fullerene,Materials science
更新于2025-09-11 14:15:04