- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Novel design of photocatalyst coaxial ferromagnetic core and semiconducting shell microwire architecture
摘要: We report a novel design of coaxial core-shell magnetic-semiconductor microwire, as a catalyst under sunlight irradiation. The nano/micro hierarchical architecture-like device is comprised of a coaxial core-shell microwire where the core is the ferromagnetic Fe metal and the shell is formed by a semiconducting hematite layer. The fabrication process of our substrate-free device is simply based on controlled thermal oxidation process revealing a simple and low-cost method. The hematite outer microlayer has a mesoporous structure decorated with nanowires. The ferromagnetic and metallic core assume fundamental importance as to mechanical stability, collect the generated photoelectrons, and to be removed back from the dye solution by a magnetic field gradient or simply a magnet. This nano/micro device has exhibited photocatalytic activity to degrade the methylene blue dye under simulated sunlight irradiation. Additionally, the coaxial magnetic/semiconducting can also be designed as a photoanode to drive water oxidation reaction. The coaxial magnetic/semiconducting photoanode response has shown good chemical stability and long activity under simulated sunlight radiation. In fact, this designed architecture gives novel perspective in the development of substrate free photocatalyst.
关键词: Photoelectrochemical performance,Hematite photoanodes,Photodegradation,Micro/nano architecture,Core-shell microstructures,Thermal oxidation
更新于2025-09-23 15:23:52