修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen

    摘要: Miniaturized near infrared spectrometers are now available, at more affordable prices than conventional spectrometers, but their performances have been poorly studied to date. This paper aimed at comparing the performances of the JDSU MicroNIR 2200 spectrophotometer (weight < 0.1 kg) with those of a conventional bench-top instrument for predicting carbon and nitrogen contents in laboratory conditions, on a range of representative Malagasy soils. Though its noticeably narrower and less resolved spectra (1151–2186 nm at 8.15 nm step vs. 1100–2498 nm at 2 nm step), the microspectrometer yielded predictions in independent validation that were almost as accurate as those of the conventional instrument (standard errors of prediction were 4.6 vs. 3.4 gC kg?1 after bias correction, and 0.36 vs. 0.35 gN kg?1, respectively). Due to noisy features, the MicroNIR spectra needed mathematical pretreatment (e.g. standard normal variate SNV), and bias correction for C, for providing accurate predictions, while the raw absorbance spectra from the conventional instrument did not. Furthermore, building multivariate models with MicroNIR spectra required less latent variables than with their conventional counterparts, and these models were less prone to performance degradation when applied to independent validation samples. Fitting the spectra of the conventional instrument to those of the MicroNIR (1150–2182 nm at 2 or 8 nm step) showed that (moderately) less accurate MicroNIR predictions could be firstly attributed to narrower spectral range rather than to poorer resolution. Considering their performances, such microspectrometers could thus represent a cost-effective alternative to conventional spectrometers. They have now to be tested in field conditions.

    关键词: Near infrared reflectance spectroscopy (NIRS),Soil organic carbon,Madagascar,Soil total nitrogen,Microspectrometer

    更新于2025-09-23 15:22:29

  • Probeless non-invasive near-infrared spectroscopic bioprocess monitoring using microspectrometer technology

    摘要: Real-time measurements and adjustments of critical process parameters are essential for the precise control of fermentation processes and thus for increasing both quality and yield of the desired product. However, the measurement of some crucial process parameters such as biomass, product, and product precursor concentrations usually requires time-consuming offline laboratory analysis. In this work, we demonstrate the in-line monitoring of biomass, penicillin (PEN), and phenoxyacetic acid (POX) in a Penicillium chrysogenum fed-batch fermentation process using low-cost microspectrometer technology operating in the near-infrared (NIR). In particular, NIR reflection spectra were taken directly through the glass wall of the bioreactor, which eliminates the need for an expensive NIR immersion probe. Furthermore, the risk of contaminations in the reactor is significantly reduced, as no direct contact with the investigated medium is required. NIR spectra were acquired using two sensor modules covering the spectral ranges 1350–1650 nm and 1550–1950 nm. Based on offline reference analytics, partial least squares (PLS) regression models were established for biomass, PEN, and POX either using data from both sensors separately or jointly. The established PLS models were tested on an independent validation fed-batch experiment. Root mean squared errors of prediction (RMSEP) were 1.61 g/L, 1.66 g/L, and 0.67 g/L for biomass, PEN, and POX, respectively, which can be considered an acceptable accuracy comparable with previously published results using standard process spectrometers with immersion probes. Altogether, the presented results underpin the potential of low-cost microspectrometer technology in real-time bioprocess monitoring applications.

    关键词: Non-invasive,P. chrysogenum,Near-infrared,In-line,Bioprocess monitoring,Microspectrometer

    更新于2025-09-12 10:27:22