- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Chemical Bonding States and Dopant Redistribution of Heavily Phosphorus-doped Epitaxial Silicon Films: Effects of Millisecond Laser Annealing and Doping Concentration
摘要: We investigated the effect of millisecond (ms) laser annealing and doping concentration on the chemical bonding states and dopant behaviors of P-doped epitaxial Si (Si:P) layers grown on Si (100) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS), secondary-ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES) measurements. Our XPS results showed that the intensities of P 2p peaks for Si:P films were increased with P concentration and subsequent laser annealing. From the SIMS and AES measurement results, we found that P atoms were slightly accumulated at the near-surface region of the Si:P film by the laser annealing, while macroscopic P concentration being maintained in the whole Si:P films without significant diffusion of P atoms toward the Si (100) substrate. In addition, we performed ex-situ HF cleaning on the as-grown and laser-annealed Si:P films in order to precisely measure the change in chemical states and dopant distribution at the near-surface region. The intensities of the P 2p peak in the as-grown Si:P films were increased after the HF cleaning due to the removal of native oxide layers from the Si:P films. In contrast, the decrease in P 2p peak intensities was observed in the laser-annealed Si:P films after the HF cleaning, indicating the dopant loss from the near-surface region with native oxide removal.
关键词: Millisecond laser annealing,Dopant redistribution,Chemical bonding states,Phosphorus-doped epitaxial silicon films,Doping concentration
更新于2025-09-19 17:13:59