- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Advanced Coating Materials || Anodic Oxide Nanostructures: Theories of Anodic Nanostructure Self-Organization
摘要: This chapter reviews the morphologies, growth kinetics, and theories of growth kinetics of anodic oxide films. Experimentally, it is possible to control the growth conditions of these films to yield several distinct morphologies, including orderly arranged nanoporous and nanotubular films. Fundamental processes that lead to self-ordering of nanoscale features, including interfacial reactions, ionic transport, stress generation, and space charge accumulation, are discussed. Various theories are included to explain the growth mechanism of oxide film.
关键词: barrier film,Anodic oxide film,porous film,EIS,anodization
更新于2025-09-23 15:23:52
-
Maximizing the Current Output in Self-Aligned Graphene–InAs–Metal Vertical Transistors
摘要: With finite density of states and electrostatically tunable work function, graphene can function as a tunable contact for semiconductor channel to enable vertical field effect transistors (VFET). However, the overall performance, especially the output current density is still limited by the low conductance of the vertical semiconductor channel, as well as large series resistance of graphene electrode. To overcome these limitations, we construct a VFET by using single crystal InAs film as the high conductance vertical channel and self-aligned metal contact as the source-drain electrodes, resulting a record high current density over 45,000 A/cm2 at a low bias voltage of 1 V. Furthermore, we construct a device-level VFET model using resistor network method, and experimentally validate the impact of each geometry parameter on device performance. Importantly, we found the device performance is not only a function of intrinsic channel material, but also greatly influenced by device geometries and footprint. Our study not only pushes the performance limit of graphene VFETs, but also sheds light on van der Waals integration between two-dimensional material and conventional bulk material for high performance VFETs and circuits.
关键词: resistor network model,high current density,vertical transistor,graphene,van der Waals heterostructure,InAs film
更新于2025-09-23 15:23:52
-
The Use of Magnetic Orientation as a Pinning Modality for Investigation of Photon-Magnon Interactions in Magnetic Nanoparticle Systems
摘要: In this work, an experimental setup to study the dependence of a visible-light transmission through a magnetic granular film on the magnetic field direction was presented. The results measured the transmission (T) of the visible light, with the wavelengths (λ) were in the range from 560 to 695 nm, by the magnetic nanogranular films Cox-(Al2O3)100-x system, with Co compositions are x = 10 ÷ 45 at.%, as a function of the magnetic field direction were reported. These investigations were carried out under an external magnetic field of H = 400 Oe, which directs to the normal of the sample surface by an angle varied in the range of θ = 0° ÷ 45°, to magnetize the magnetization direction of all the Co particles following this direction. Consequently, the angle θ between the magnetization direction with the incident-light direction, which sets as the optical axis of the system and always keeps fixedly to the normal of the sample surface, is established. The experimental results showed the different dependencies of T on the angle θ, the magnetic field H, the Co composition x, and the wavelength λ. These dependencies attributed to a behavior that relates to so-called photon-magnon interaction.
关键词: Ferromagnetic Nanoparticle (FMNP),Visible-Light Transmission,Magnetic Nanogranular Film (MNGF),Plasmonic Spin,Photon-Magnon Interaction
更新于2025-09-23 15:23:52
-
Study on the Adhesion Force Between Ga-Doped ZnO Thin Films and Polymer Substrates
摘要: Flexible Ga doped ZnO (GZO) transparent conductive thin films were prepared on polycarbonate (PC) substrates at room temperature by magnetron sputtering. The adhesive property between the GZO film and the PC substrate was investigated quantitatively by the scratch test, which is designed for the quantitative assessment of the mechanical integrity of coated surfaces. The effect of the sputtering pressures on the adhesion forces for the GZO films was investigated. When the sputtering pressure varied from 0.2 to 0.5 Pa, no obvious adhesion force alteration was observed. However, when the sputtering pressure was increased to 0.7 Pa, the adhesion force was decreased. The lowest square resistance of the GZO film was 18.6 Ω/sq. Regardless of the sputtering pressure, the transmittance in the visible light was about 90%. When the sputtering pressure was 0.4 Pa, the optimal figure of merit (ΦTC) was 2.5 × 10?2 Ω?1, indicating that the optimal pressure was 0.4 Pa.
关键词: Adhesion Force,Flexibility,ZnO Transparent Conductive Film
更新于2025-09-23 15:23:52
-
Transparent dual-band monopole antenna using a μ-metal mesh on the rear glass of an automobile for frequency modulation/digital media broadcasting service receiving
摘要: A transparent dual-band monopole (Inverted-F) antenna using a micro-metal mesh film (μ-MMF) designed on the rear glass of an automobile (Hyundai K5) is presented. This design allows the optically transparent antenna to be installed in a wider space, thus overcoming the space limitation typically posed by roof-mounted shark-fin antennas. It can also reasonably solve the problem of low reception sensitivity and radiation interference from antennas operating in other service bands. The antenna is a combination of two simple monopoles operating in the frequency modulation (FM) (88–108 MHz) and the digital media broadcasting (DMB) (174–216 MHz) service bands. Measured reflection coefficients (S11) of the transparent antenna using μ-MMF are under ?6 dB (VSWR 3:1) in both the bands, and the radiation pattern shows directive patterns to the outward direction from the car; the average peak gains in the XY plane are 1.1 dB in the FM service band and 8.8 dB in the DMB service band.
关键词: inverted F antenna,metal mesh film,automotive antenna,transparent antenna,digital multimedia broadcasting (DMB) service
更新于2025-09-23 15:23:52
-
Elucidating the Exceptional Passivation Effect of 0.8 nm Evaporated Aluminium on Transparent Copper Films
摘要: Slab-like copper films with a thickness of 9 nm (~70 atoms) and sheet resistance of ≤9 Ω sq?1 are shown to exhibit remarkable long-term stability toward air-oxidation when passivated with an 0.8 nm aluminium layer deposited by simple thermal evaporation. The sheet resistance of 9 nm Cu films passivated in this way, and lithographically patterned with a dense array of ~6 million apertures per cm2, increases by <3.5% after 7,000 h exposure to ambient air. Using a combination of annular-dark field scanning transmission electron microscopy, nanoscale spatially resolved elemental analysis and atomic force microscopy, we show that this surprising effectiveness of this layer results from spontaneous segregation of the aluminium to grain boundaries in the copper film where it forms a ternary oxide plug at those sites in the metal film most vulnerable to oxidation. Crucially, the heterogeneous distribution of this passivating oxide layer combined with its very low thickness ensures that the underlying metal is not electrically isolated, and so this simple passivation step renders Cu films stable enough to compete with Ag as the base metal for transparent electrode applications in emerging optoelectronic devices.
关键词: passivation,thin film,transparent electrode,lithography,copper
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) - Waikoloa Village, HI, USA (2018.6.10-2018.6.15)] 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) - Commercial Test of Anti-Reflective Coating on First Solar Cadmium Telluride PV Modules
摘要: Anti-reflective coatings (ARC) are commonly applied to photovoltaic (PV) modules in the solar industry to increase power and energy output. In addition to characterization of initial module power and angle of incidence modifier (IAM), it is important to verify that the expected gain is observed in commercial system operation. This analysis shows the increased performance of ARC First Solar CdTe PV modules compared to non-ARC equivalent modules in a commercial test in New South Wales, Australia. PPI analysis indicates a sustained ARC performance gain over time, suggesting good ARC durability. Detailed actual-expected analysis shows both array types performing at or above expected levels after almost 2 years in the field. ARC arrays show slightly greater benefit than predicted compared to non-ARC arrays.
关键词: CdTe thin film photovoltaics,solar power generation,performance analysis,photovoltaic systems,PV anti-reflective coatings,solar energy
更新于2025-09-23 15:23:52
-
Skin friction measurements on structured surfaces using Clauser-chart method and Oil film interferometry
摘要: Measurements of skin friction have been performed on flat and hexagonal concave surfaces using the conventional Clauser-chart method and the Oil film interferometry. The values of shear stress coefficients measured by the conventional Clauser-chart method on a flat plate were found to be up to 13 % higher from the ones deduced by the Oil film interferometry. The velocity profiles required for the Clauser-chart were obtained by using hot wire anemometry. The analysis of the results suggested that the conventional Clauser-chart method cannot be used to predict shear stresses acting on the hexagonal concave surfaces due to the existence of strong pressure gradients. Oil film interferometry not only provides accurate and direct values of shear stress coefficients but also helps to visualize the flow above the surface.
关键词: Oil film interferometry,skin friction,Clauser-chart
更新于2025-09-23 15:23:52
-
Fabrication and photocatalytic performance evaluation of hydrodynamic erosion–resistant nano-TiO2–silicone resin composite films
摘要: Herein, we present the preparation of nano-TiO2–silicone resin composite films by double liquid phase spray deposition. The films exhibit better adhesion stability and photocatalytic activity under a hydrodynamic erosion condition than conventional nano-TiO2 composite films. The TiO2 layer morphology and effective TiO2 coverage ratio (CR) were affected by the initial curing time (ICT) of the silicone resin, e.g., the increase in an ICT from 10 to 40 min resulted in a CR change from 79.1 to 98.7%. The surface morphology evolution of composite films was studied under a hydrodynamic erosion period of 4 weeks. Obtained results allowed the 4-week evolution to be divided into four stages (pitting, crack pregnant, banded stripping, and surface stripping periods), additionally revealed that the CR of all samples was remained above 65%. The photocatalytic activity of composite films before and after 4-week hydrodynamic erosion was evaluated by rhodamine B degradation experiments. The 4-week erosion only led to the decrease of the photodegradation efficiencies by less than 40% in all cases. Thus, the fabricated TiO2–silicone composite films demonstrated excellent durability and photocatalytic activity under the conditions of long-term hydrodynamic erosion, allowing one to conclude that this work paves the way to the fabrication of next-generation photocatalytic materials for industrial applications.
关键词: Photocatalysis,Film formation mechanism,Silicone resin,Photodegradation,Hydrodynamic erosion resistance,Nano-TiO2
更新于2025-09-23 15:23:52
-
Continuous Photocatalysis Based on Layer-by-layer Assembly of Separation-free TiO?/Reduced Graphene Oxide Film Catalysts with Increased Charge Transfer and Active-site
摘要: Although photodegradation is the most widely studied method for the purification of water, the challenges for the post-separation of catalysts from water prevent the technique from practical applications. In this study, separation-free TiO2/reduced graphene oxide (rGO) multilayer films were first prepared through layer-by-layer (LbL) assembly of TiO2 and graphene oxide (GO) on quartz slides, followed by a reduction of the assembled GO to rGO. For a proof-of-concept demonstration of novel continuous photocatalysis with potential for scale-up production, these quartz slides with TiO2/rGO film catalysts were further assembled into slide arrays in a home-made rectangular quartz reactor and a model pollutant Rhodamine B (RhB) solution was circularly pumped over the slide surface under UV irradiation. It was found that the as-prepared TiO2/rGO film catalysts show excellent enhanced continuous photocatalytic activity, with a photodegradation rate constant of 2.6 × 10-2 min?1 exceeding the corresponding TiO2/GO and TiO2 (TiO2/PSS) samples by a factor of 11.3 and 13, respectively. The enhanced performance is attributed to the formation of Ti-O-C bonds in film catalysts bridging TiO2 and rGO to enable efficient charge separation and transfer, the Ti-O-C bond bridged electron transfer leading to increase in ·O2- active sites on the rGO surface, and the porous-like multilayer structure. The recycling experiments showed the film catalysts are stable and could be reused with the same efficiency for at least 8 cycles.
关键词: layer-by-layer,continuous photocatalysis,separation free,graphene,film
更新于2025-09-23 15:23:52