修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Ultrasmall MoS2 Nanodots Doped Biodegradable SiO2 Nanoparticles for Clearable FL/CT/MSOT Imaging Guided PTT/PDT Combination Tumor therapy

    摘要: Recently, we developed ultrasmall molybdenum disulfide (MoS2) quantum dots for computed tomography (CT) and multispectral optoacoustic tomography (MSOT) image-guided photothermal therapy (PTT). But, due to the rapid body elimination and the limited blood circulation time, the tumor uptake of the dots is low. In our study, this problem was solved via designing an amino modified biodegradable nanomaterial based on MoS2 quantum dots doped disulfide-based SiO2 nanoparticles (denoted MoS2@ss-SiO2) for multimodal application. By integrating the MoS2 quantum dots into clearable SiO2 nanoparticles, this nanoplatform with an appropriate particle size can not only degrade and excrete in a reasonable period induced by the redox-responsive with the glutathione (GSH), but also exhibits a high tumor uptake due to the longer blood circulation time. Moreover, hyaluronic acid (HA) and chlorin e6 (Ce6) were adsorbed on the outer shell for the tumor targeting effect and photodynamic therapy, respectively. So this biodegradable and clearable theranostic nanocomposite applicable in integrated fluorescence(FL)/CT/MSOT imaging guided combined photothermal therapy (PTT) and photodynamic therapy (PDT) is very optimistic in biomedical applications in the future.

    关键词: biodegradable,multi-modal imaging,clearable,combination tumor therapy,ultrasmall MoS2 quantum dots

    更新于2025-09-23 15:22:29

  • Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration

    摘要: Background: Cell-based regenerative medicine therapies are now frequently tested in clinical trials. In many conditions, cell therapies are administered systemically, but there is little understanding of their fate, and adverse events are often under-reported. Currently, it is only possible to assess safety and fate of cell therapies in preclinical studies, specifically by monitoring animals longitudinally using multi-modal imaging approaches. Here, using a suite of in vivo imaging modalities to explore the fate of a range of human and murine cells, we investigate how route of administration, cell type and host immune status affect the fate of administered cells. Methods: We applied a unique imaging platform combining bioluminescence, optoacoustic and magnetic resonance imaging modalities to assess the safety of different human and murine cell types by following their biodistribution and persistence in mice following administration into the venous or arterial system. Results: Longitudinal imaging analyses (i) suggested that the intra-arterial route may be more hazardous than intravenous administration for certain cell types, (ii) revealed that the potential of a mouse mesenchymal stem/stromal cell (MSC) line to form tumours depended on administration route and mouse strain and (iii) indicated that clinically tested human umbilical cord (hUC)-derived MSCs can transiently and unexpectedly proliferate when administered intravenously to mice. Conclusions: In order to perform an adequate safety assessment of potential cell-based therapies, a thorough understanding of cell biodistribution and fate post administration is required. The non-invasive imaging platform used here can expose not only the general organ distribution of these therapies, but also a detailed view of their presence within different organs and, importantly, tumourigenic potential. Our observation that the hUC-MSCs but not the human bone marrow (hBM)-derived MSCs persisted for a period in some animals suggests that therapies with these cells should proceed with caution.

    关键词: Safety,Mesenchymal stem/stromal cells,Preclinical models,Multi-modal imaging,Cell therapies,Cell tracking

    更新于2025-09-11 14:15:04