修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • High-Accuracy SINS/LDV Integration for Long-Distance Land Navigation

    摘要: Since the conventional strapdown inertial navigation system (SINS)- and odometer (OD)-integrated navigation has certain limitations, such as suffering from scale factor variation and being affected by wheel slipping and skidding, we present a high-accuracy integrated navigation system that uses both the SINS and laser Doppler velocimeter (LDV) for land vehicles to overcome these problems. We took the lever-arm residual and boresight errors into consideration and formed a complete 21-state Kalman filter to accomplish integrated navigation and precise sensor-to-sensor calibration. The observability analysis of the SINS/LDV system provides valuable insights into the conditions under which the states can be estimated. In addition, the summed measurement model and sequential Kalman filter calculation are deduced to make full use of the nonholonomic constraints (NHC) and LDV measurements. Finally, a long-distance experiment (230 km) with a navigation-grade IMU demonstrated that positioning accuracies of better than 0.02% of the distance travelled can be achieved in both the horizontal and vertical directions.

    关键词: land navigation,Inertial navigation system,nonholonomic constraints (NHC),odometer (OD),laser Doppler velocimeter (LDV)

    更新于2025-09-19 17:15:36

  • Neutral Cyclometalated Iridium(III) Complexes Bearing Substituted N-Heterocyclic Carbene (NHC) Ligands for High-Performance Yellow OLED Application

    摘要: The synthesis, crystal structure, and photophysics of a series of neutral cyclometalated iridium(III) complexes bearing substituted N-heterocyclic carbene (NHC) ancillary ligands ((C∧N)2Ir(R-NHC), where C∧N and NHC refer to the cyclometalating ligand benzo[h]quinoline and 1-phenylbenzimidazole, respectively) are reported. The NHC ligands were substituted with electron-withdrawing or -donating groups on C4′ of the phenyl ring (R = NO2 (Ir1), CN (Ir2), H (Ir3), OCH3 (Ir4), N(CH3)2 (Ir5)) or C5 of the benzimidazole ring (R = NO2 (Ir6), N(CH3)2 (Ir7)). The configuration of Ir1 was confirmed by a single-crystal X-ray diffraction analysis. The ground- and excited-state properties of Ir1?Ir7 were investigated by both spectroscopic methods and time-dependent density functional theory (TDDFT) calculations. All complexes possessed moderately strong structureless absorption bands at ca. 440 nm that originated from the C∧N ligand based 1π,π*/1CT (charge transfer)/1d,d transitions and very weak spin?forbidden 3MLCT (metal-to-ligand charge transfer)/3LLCT (ligand-to-ligand charge transfer) transitions beyond 500 nm. Electron-withdrawing substituents caused a slight blue shift of the 1π,π*/1CT/1d,d band, while electron-donating substituents induced a red shift of this band in comparison to the unsubstituted complex Ir3. Except for the weakly emissive nitro-substituted complexes Ir1 and Ir6 that had much shorter lifetimes (≤160 ns), the other complexes are highly emissive in organic solutions with microsecond lifetimes at ca. 540?550 nm at room temperature, with the emitting states being predominantly assigned to 3π,π*/3MLCT states. Although the effect of the substituents on the emission energy was insignificant, the effects on the emission quantum yields and lifetimes were drastic. All complexes also exhibited broad triplet excited-state absorption at 460?700 nm with similar spectral features, indicating the similar parentage of the lowest triplet excited states. The highly emissive Ir2 was used as a dopant for organic light-emitting diode (OLED) fabrication. The device displayed a yellow emission with a maximum current efficiency (ηc) of 71.29 cd A?1, a maximum luminance (Lmax) of 32747 cd m?2, and a maximum external quantum efficiency (EQE) of 20.6%. These results suggest the potential of utilizing this type of neutral Ir(III) complex as an efficient yellow phosphorescent emitter.

    关键词: cyclometalated iridium(III) complexes,phosphorescent emitter,OLED,photophysics,N-heterocyclic carbene (NHC) ligands

    更新于2025-09-19 17:13:59

  • Photogeneration of N-Heterocyclic Carbenes: Application in Photoinduced Ring-Opening Metathesis Polymerization

    摘要: We report a method to generate the N-heterocyclic carbene (NHC) 1,3-dimesitylimidazol-2-ylidene (IMes) under UV-irradiation at 365 nm to characterize IMes and determine the corresponding photochemical mechanism. Then, we describe a protocol to perform ring-opening metathesis polymerization (ROMP) in solution and in miniemulsion using this NHC-photogenerating system. To photogenerate IMes, a system comprising 2-isopropylthioxanthone (ITX) as the sensitizer and 1,3-dimesitylimidazolium tetraphenylborate (IMesH+BPh4-) as the protected form of NHC is employed. IMesH+BPh4- can be obtained in a single step by anion exchange between 1,3-dimesitylimidazolium chloride and sodium tetraphenylborate. A real-time steady-state photolysis setup is described, which hints that the photochemical reaction proceeds in two consecutive steps: 1) ITX triplet is photo-reduced by the borate anion and 2) subsequent proton transfer takes place from the imidazolium cation to produce the expected NHC IMes. Two separate characterization protocols are implemented. Firstly, CS2 is added to the reaction media to evidence the photogeneration of NHC through formation of the IMes-CS2 adduct. Secondly, the amount of NHC released in situ is quantified using acid-base titration. The use of this NHC photo-generating system for the ROMP of norbornene is also discussed. In solution, a photopolymerization experiment is conducted by mixing ITX, IMesH+BPh4-, [RuCl2(p-cymene)]2 and norbornene in CH2Cl2, then irradiating the solution in a UV reactor. In a dispersed medium, a monomer miniemulsion is first formed then irradiated inside an annular reactor to produce a stable poly(norbornene) latex.

    关键词: photoreactivity,ring-opening,miniemulsion,metathesis,Chemistry,photolysis,Polymer,photochemistry,Issue 141,NHC,photoreactor,carbene,ROMP

    更新于2025-09-09 09:28:46