修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

13 条数据
?? 中文(中国)
  • Integration of organic/inorganic nanostructured materials in a hybrid nanogenerator enables efficacious energy harvesting via mutual performance enhancement

    摘要: Recent reports demonstrate that hybrid energy harvesting devices can efficiently convert ubiquitously available but mostly unexploited ambient energies (e.g., mechanical, chemical, thermal, solar) into usable power that can potentially support a new generation of self-powered electronic systems. In this paper, we present a hybrid organic/inorganic nanogenerator on shim substrates, which integrates both piezoelectric and triboelectric components based on inorganic p-n junction ZnO nanostructures and nanostructured organic polytetrafluoroethylene (PTFE) film, respectively. In this design, individual components can be operated independently or concurrently. Moreover, when operated concurrently, component performance is mutually enhanced, enabling more efficient conversion of mechanical energy into electrical energy in a single press-and-release cycle. When triggered with 25 Hz frequency and 1G acceleration of external force, the piezoelectric nanogenerator (PENG) component generates a peak-to-peak output voltage of 34.8V, which is ~3 times higher than its output when it acts alone. Similarly, the triboelectric nanogenerator (TENG) component generates a peak-to-peak output voltage of 356V under the same conditions, which is higher than its initial output of 280V when acting alone. The nanogenerator unit produces an average peak output voltage of 186 V, current density of 10.02 μA/cm2, and average peak power density of 1.864 mW/cm2 when operated in the hybrid configuration. The device can even produce an average peak-to-peak voltage of ~160V from normal hand movement when placed under a wristband fitness tracker, and ~580V from human walking when placed within the walker’s shoe. The device has been demonstrated to charge commercial capacitors up to a few volts within several seconds.

    关键词: nanoplates,energy harvesting,hybrid nanogenerators,nanowires,piezoelectricity,triboelectricity

    更新于2025-09-23 15:23:52

  • La-doped p-type ZnO nanowire with enhanced piezoelectric performance for flexible nanogenerators

    摘要: In recent years, energy harvesting has attracted considerable attention as a promising method to convert waste energy to useful energy. In particular, piezoelectric energy harvesters are of significant interest, because they have a simple structure and can be used to harvest energy regardless of weather or other environmental conditions. In accordance with the miniaturization trend of electronic devices driven by low power, piezoelectric nanogenerators (PENGs) using various nanostructured materials are being developed. Among them, ZnO nanowires (NWs) are most widely used for the use of PENGs. However, while research on n-type ZnO NWs is extensive, studies on p-type ZnO NWs are insufficient owing to their poor stability. In this study, La-doped p-type ZnO (La:ZnO) NWs were synthesized by a hydrothermal method to expand the applications of p-type ZnO and determine their potential as PENGs. XRD analysis showed that La3+ ions was well doped without the formation of any secondary phases and caused a change in the lattice parameter when compared to that of undoped ZnO. XPS analysis was performed to investigate the surface elemental compositions of La:ZnO NWs, and the morphology of La:ZnO NWs was investigated using SEM and TEM. We further studied the piezoelectric output performance of undoped and La-doped ZnO NWs, and found that La:ZnO NWs showed improved piezoelectric output performance as a result of electron screening effect of the p-type semiconductor.

    关键词: p-type ZnO,La-doping,Flexible device,ZnO nanowires,Nanogenerators

    更新于2025-09-23 15:23:52

  • 3D core-multishell piezoelectric nanogenerators

    摘要: The thin film configuration presents obvious practical advantages over the 1D implementation in energy harvesting systems such as easily manufacturing and processing, and long-lasting and stable devices. However, ZnO-based piezoelectric nanogenerators (PENGs) generally rely on the exploitation of single-crystalline nanowires because of their self-orientation in the c-axis direction and ability to accommodate long deformations resulting in high piezoelectric performance. Herein, we show an innovative approach to produce PENGs by combining polycrystalline ZnO layers fabricated at room temperature by plasma-assisted deposition with supported small-molecule organic nanowires (ONWs) acting as 1D scaffolds. Such hybrid nanostructures present convoluted core-shell morphology, formed by a single-crystalline organic nanowire conformally surrounded by a poly-crystalline ZnO shell and combine the organic core mechanical properties with the ZnO layer piezoelectric response. In a step forward towards the integration of multiple functions within a single wire, we have also developed ONW-Au-ZnO nanoarchitectures including a gold shell acting as inner electrode achieving output piezo-voltages up to 170 mV. The synergistic combination of functionalities in the ONW-Au-ZnO devices promotes an enhanced performance generating piezo-currents one order of magnitude larger than the ONW-ZnO nanowires and superior to the thin film nanogenerators for equivalent and higher thicknesses.

    关键词: piezoelectric nanogenerators,organic nanowires,ZnO,small-molecules,plasma deposition,core-shell nanowires

    更新于2025-09-23 15:22:29

  • Strategies to Achieve High Performance Piezoelectric Nanogenerators

    摘要: Piezoelectric nanogenerators have attracted much attention in the past decade. In this study, the development of piezoelectric nanogenerators and their progress toward high power generation is discussed. The characteristics and application range of numerous types of piezoelectric nanogenerators are also considered. In addition, several strategies that may improve the performance of piezoelectric nanogenerators are summarized. Here, we compare the open circuit voltages and short circuit currents of various piezoelectric nanogenerators under different factors, and the current problems of piezoelectric nanogenerators are also discussed. Finally, the future prospects and directions of piezoelectric nanogenerators are predicted. Future studies should be focused on the production of high-performance materials, the establishment of working principle and simulation model, the integration of nanogenerator, and the design of the energy harvesting circuit. Hence, it is emergency to search for functional materials with high piezoelectricity and further improve the electromechanical properties of existing piezoelectric materials. Moreover, further research is needed to increase the stability and flexibility of composite materials, to develop wearable and embedded flexible functional devices based on the biocompatibility of inorganic nanoparticles, and to supply power for microelectronic systems.

    关键词: BaTiO3,Piezoelectric nanogenerators,Composite thin film materials,PVDF,Chemical doping,Nanostructure

    更新于2025-09-23 15:21:01

  • Triboelectric Nanogenerator: A Foundation of the Energy for the New Era

    摘要: As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang’s group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self-powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self-powered sensors, large-scale blue energy, and direct high-voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.

    关键词: Internet of Things,Energy Harvesting,Triboelectric Nanogenerators,Artificial Intelligence,Self-Powered

    更新于2025-09-23 15:21:01

  • Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films

    摘要: PVDF-TrFE-based wearable nanogenerators were designed and fabricated with enhanced performances via reduced graphene oxides (rGO) and in situ electric polarization. Our laboratory-made polarization system may complete the in situ poling of PVDF-TrFE films in 5 min without heating, which has the advantages of high production efficiency, excellent piezoelectric performances, and favorable uniformity, compared to traditional poling approaches. The addition of rGO into PVDF-TrFE significantly improved the crystallinity of the b-phase PVDF-TrFE and enhanced the formation of hydrogen bonds via interaction of dipoles between rGO and PVDF-TrFE. This further improved the energy-harvesting performances of these piezoelectric nanogenerators with 1.6 times of the open-circuit voltage and 2 times of the power density than that of pure PVDF-TrFE-based devices. The high production efficiency and excellent piezoelectric performances of in situ polarized rGO/PVDF-TrFE make them of great potential for self-powered, wearable/portable devices.

    关键词: Electronic materials,Reduced graphene oxide,PVDF-TrFE,Wearable piezoelectric nanogenerators,In situ polarization

    更新于2025-09-19 17:15:36

  • Dielectric and piezoelectric augmentation in self-poled magnetic Fe <sub/>3</sub> O <sub/>4</sub> /poly(vinylidene fluoride) composite nanogenerators

    摘要: One major discipline of contemporary research in energy harvesting and conversion aims in developing lead-free, biocompatible, easily scalable, flexible and high power-denisty composite piezoelectric films, which can obstruct electromagnetic interference also for smart device applications. A four-fold enhancement of its polar β-phase is verified from XRD and Raman spectra against incorporation of Fe3O4. Dielectric analysis suggests higher dielectric constant and lower dissipation for the films with tiny MNPs embedded in PVDF. The observations are duly validated from first principles studies. The physisorption process is recognized via geometrical optimization of Fe3O4/PVDF composite structure and significant amount of charge-transfer is demonstrated by the Mulliken charge-analysis. Open-circuit voltage and short-circuit current attain enhancement upto an order due to adequate ion-dipole and dipole-dipole interactions between the polar nanoscopic surface of Fe3O4 and PVDF. Finally, the nanogenerators are employed to light up commercial LEDs.

    关键词: flexible nanogenerators,electret,electromagnetic interference shielding,superparamagnetic nanoparticles,Piezoelectricity

    更新于2025-09-19 17:13:59

  • Enhancing the Output Performance of Triboelectric Nanogenerator via Grating‐Electrode‐Enabled Surface Plasmon Excitation

    摘要: The surface charge density and the output impedance of triboelectric nanogenerators (TENGs) are two critical factors for TENGs to speed up their commercialization, so it is important to explore unique methods to reduce the output impedance and increase the surface charge density. Here, an approach is demonstrated to effectively boost the output performance of TENG while reducing the output impedance of TENGs by utilizing grating-electrode-enabled surface plasmon excitation. A sustainable and enhanced output performance of about 40 μA (short-circuit current) and 350 V (peak-to-peak voltage at a resistance of 10 MΩ) is produced via grating-coupled surface plasmon resonance on the TENG with the aluminum grating electrode in the line density of 600 lines mm?1, and it delivers a peak output power of 3.6 mW under a loading resistance of 1 MΩ, giving over 4.5-fold enhancement in output power and a 75% reduction in the output impedance. Finally a self-powered ultrasonic ranging system is utilized to verify the capability of the TENG in powering portable electrics.

    关键词: optical grating,surface plasmon resonance,hot electron–hole pairs,triboelectric nanogenerators

    更新于2025-09-19 17:13:59

  • Ferroelectric‐Polymer‐Enabled Contactless Electric Power Generation in Triboelectric Nanogenerators

    摘要: Triboelectric nanogenerators (TENGs) are considered as one of the most important renewable power sources for mobile electronic devices and various sensors in the Internet of Things era. However, their performance should inherently be degraded by the wearing of contact surfaces after long-term use. Here, a ferroelectric polymer is shown to enable TENGs to generate considerable electricity without contact. Ferroelectric-polymer-embedded TENG (FE-TENG) consists of indium tin oxide (ITO) electrodes, a polydimethylsiloxane (PDMS) elastomer, and a poly(vinylidene fluoride) (PVDF) polymer. In contrast to down- and non-polarization, up-polarized PVDF causes significantly large triboelectric charge, rapidly saturated voltage/current, and considerable remaining charge due to the modulated surface potential and increased capacitance. The remained triboelectric charges flow by just approaching/receding the ITO electrode to/from the PDMS without contact, which is sufficient to power light-emitting diodes and liquid crystal displays. Additionally, the FE-TENG can charge an Li-battery with a significantly reduced number of contact cycles. Furthermore, an arch-shaped FE-TENG is demonstrated to operate a wireless temperature sensor network by scavenging the irregular and random vibrations of water waves. This work provides an innovative and simple method to increase conversion efficiency and lifetime of TENGs; which widens the applications of TENG to inaccessible areas like the ocean.

    关键词: contactless power generation,surface potential,capacitance,ferroelectric polymers,triboelectric nanogenerators

    更新于2025-09-11 14:15:04

  • Vertically-aligned lead-free BCTZY nanofibers with enhanced electrical properties for flexible piezoelectric nanogenerators

    摘要: Flexible lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-0.2 mol%Y nano?bers (BCTZY NFs) were synthesized by electrospinning and their corresponding nanogenerators (NGs) with vertical alignments were fabricated. The low-temperature sintering properties of BCTZY NFs were investigated, to optimize their synthesis path and minimize the thermal energy consumption during the sintering process. The continuity, ?exibility, and stability of the BCTZ-based NFs were improved by adding Y3+. Moreover, the temperature-evolved Raman spectra displayed a high Curie temperature of 280 °C for BCTZY NFs, which was far higher than that of about 90 °C for BCTZ-based ceramic bulks, owing to the discontinuous physical property of NFs. The dielectric, ferroelectric, and piezoelectric properties of the vertically aligned BCTZY NFs/PDMS were estimated and compared with those of BCTZ NFs/PDMS composites, to verify the advantages of vertical alignments and the donor doping e?ect of Y3+. Vertically aligned BCTZY NF-based NGs showed an average VOC of 3.0 V and ISC of 85 nA by ?nger tapping, suggesting their potential applications in tiny energy harvesting.

    关键词: Electrospinning,Lead-free BCTZY nano?bers,Vertical alignment,Piezoelectric nanogenerators

    更新于2025-09-10 09:29:36