- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser
摘要: Mode-locked oscillators with highly tunable output characteristics are desirable for a range of applications. Here, with a custom-made tunable filter, we demonstrate a carbon nanotube (CNT) mode-locked thulium fiber laser with widely tunable wavelength, spectral bandwidth, and pulse duration. The demonstrated laser’s wavelength tuning range reached 300 nm (from 1733 nm to 2033 nm), which is the widest-ever that was reported for rare-earth ion doped fiber oscillators in the near-infrared. At each wavelength, the pulse duration can be regulated by changing the filter’s bandwidth. For example, at ~1902 nm, the pulse duration can be adjusted from 0.9 ps to 6.4 ps (the corresponding output spectral bandwidth from 4.3 nm to 0.6 nm). Furthermore, we experimentally and numerically study the spectral evolution of the mode-locked laser in presence of a tunable filter, a topic that has not been thoroughly investigated for thulium-doped fiber lasers. The detailed dynamical change of the mode-locked spectra is presented and we observed gradual suppression of the Kelly sidebands as the filter’s bandwidth is reduced. Further, using the polarization-maintaiing (PM) cavity ensures that the laser is stable and the output laser’s polarization extinction ratio is measured to exceed 20 dB.
关键词: thulium fiber laser,spectral bandwidth,polarization-maintaiing cavity,Kelly sidebands,tunable wavelength,pulse duration,Mode-locked oscillators,carbon nanotube
更新于2025-11-28 14:23:57
-
Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser
摘要: In this study, boron-doped single-walled carbon nanotubes (SWCNTs) were synthesized by high-temperature heat treatment (1300 °C) with a boric acid precursor and SWCNTs instead of the conventional chemical doping process. Then, these boron-doped single-walled carbon nanotubes (B-SWCNTs) were added to polyurethane to prepare polyurethane nanocomposites having excellent thermal and mechanical properties. Changes in properties that occurred due to structural changes inside the composite were investigated as the added amount of nanofiller was increased. In particular, a near-infrared (NIR) laser (808 nm) was directly irradiated on the nanocomposite film to induce photothermal properties on the surface of the B-SWCNTs. In the case of the PU nanocomposite film with a filler content of 3 wt%, a self-heating film material that rapidly heated to 250 °C within 10 s was developed. The newly developed material can be applied to electronic devices and products as a heat-generating coating material, de-icing of airplane, a heat sink, for bio-sensing, etc., using a moulding process.
关键词: boron-doping,photothermal,thermoelectrics,carbon nanotube,polyurethane
更新于2025-11-25 10:30:42
-
A carbon nanotube-iron (III) oxide nanocomposite as a cathode in dye-sensitized solar cells: Computational modeling and electrochemical investigations
摘要: Here is the evaluating result on the applicability of the multi-walled carbon nanotube (MWCNT) and a-iron (III) oxide (a-Fe2O3) nanocomposite as a cathode material in dye-sensitized solar cells (DSCs). The morphology and the structure of the MWCNT/a-Fe2O3 nanocomposite have characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray elemental mapping analysis. Moreover, the electrochemical performance of the nanocomposite has studied toward the activity of Iˉ/I3ˉ redox couple which represents high current density, low peak-to-peak separation, low charge-transfer resistance, and almost 100% stable response signal. Furthermore, the computational modeling employing the molecular mechanics (MM) and the restricted-Hartree Fock/semiempirical parameterization (RHF/PM6) methods reveals that the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the HOMO-LUMO energy gap of the modeled nanocomposite are as (cid:1)6.88, (cid:1)3.62, and 3.26 eV, respectively. These properties match with the electronic-level domino of the DSC structure. Finally, the DSC device has fabricated using N719-sensitized TiO2 photoanode and MWCNT/a-Fe2O3 counter electrode, presenting the open-circuit potential, the short-circuit current density, and the power-conversion ef?ciency of 0.7 V, 20.37 mA cmˉ2, and 6.0%, respectively. This study successfully approves the potential of the nanocomposite as a cathode material in iodine-based dye-sensitized solar cells.
关键词: Dye-sensitized solar cell,Nanocomposite,Carbon nanotube,Molecular mechanics,RHF/PM6,Iron (III) oxide
更新于2025-11-21 11:18:25
-
Enhanced photocatalytic performance of TiO2 NTs decorated with chrysanthemum-like BiOI nanoflowers
摘要: The BiOI nanosheets/chrysanthemum-like nanoflowers were successfully deposited on the surface of TiO2 nanotube arrays (TiO2 NTs) by the successive ionic layer adsorption and reaction (SILAR) method, and the morphology and visible light response of samples with different SILAR deposition cycles were investigated in detail. The as-prepared BiOI/TiO2 NTs significantly enhanced photoelectrocatalytic (PEC) activity for the removal of Methyl orange (MO), Rhodamine B (RhB), Methylene blue (MB) and Cr(VI). The as-prepared Sample-7 with chrysanthemum-like nanostructures showed the high visible light photocurrent density of 120.06 μA/cm2, photovoltage of ?203.61 mV/cm2, PEC efficiencies of 45%, 62%, 79% and 77% for the removal of MO, RhB, MB and Cr(VI), respectively. The high PEC performances could be ascribed to the excellent visible light response and charge carrier transportation in chrysanthemum-like BiOI nanoflowers. By further probing the charge separation and transportation behaviors, the experiments of the energy band structure and active species trapping were carried out. A possible p-n heterojunction photocatalytic mechanism was proposed, which not only benefited the efficient separation of photogenerated electrons but also demonstrated the advanced capacity for the PEC removal of organic dyes and heavy metal ions.
关键词: BiOI,Photoelectrochemical performance,TiO2 nanotube arrays,Nanoflowers
更新于2025-11-19 16:56:35
-
Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix
摘要: Surface plasmon resonance (SPR) based dopamine sensor is realized using the state-of-art technique of molecular imprinting over an optical fiber substrate. Polypyrrole (PPy) is depicted as an effective polymer for the imprinting of dopamine through a green synthesis approach. Sensitivity of the probe is enhanced by the augmenting effect of surface imprinting of dopamine in polypyrrole over multiwalled carbon nanotubes (MWCNTs). To ensure the permselectivity of the probe towards dopamine molecules, a cation exchange polymer, nafion, is utilized as a membrane over imprinted sites to reduce the interference from anionic analytes like ascorbic acid and uric acid at physiological pH. The probe is characterized for a wide range of dopamine concentration from 0 to 10-5 M in artificial cerebrospinal fluid. Various probe parameters are varied to maximize the sensitivity of the sensor. The sensor possesses 18.9 pM as the limit of detection (LOD) which is lowest of those reported in the literature. The manifestation of sensing probe over an optical fiber along with the improved LOD makes the approach highly advantageous in terms of stability, repeatability, online remote monitoring, fast response, and miniaturization for its in vivo/in vitro applications in clinical sensing of dopamine.
关键词: surface plasmon,dopamine,Optical fiber,polypyrrole,nafion,molecular imprinting,sensor,multiwalled carbon nanotube
更新于2025-10-22 19:40:53
-
Germanium catalyzed vapor–liquid–solid growth and characterization of amorphous silicon oxide nanotubes: comparison to the growth of its nanowires
摘要: One-dimensional (1D) nanostructures were grown with a simple technique using continuous-wave laser vaporization of a Ge target containing 5 at.% Si in high-pressure (up to 0.9 MPa) Ar gas atmosphere. A maximum amount (~ 30% of all products) of 1D nanostructures was obtained at 0.9 MPa and these nanostructures were identified as amorphous silicon oxide (SiOx) nanotubes (NTs) and attached with crystalline Ge-rich NPs with elongated prolate-like or sphere-like shapes at their tips by transmission electron microscopy (TEM), high-angle annular dark-field-scanning TEM, and energy dispersive X-ray line scan spectrometry. As the Ar pressure decreased from 0.9 to 0.03 MPa, the average diameters, wall thicknesses, and lengths of the NTs decreased from 57.9 to 22.9 nm, 13.2 to 6.7 nm, and 2.1 to 0.2 μm, respectively, and the tip NP size decreased from 139.0 to 41.7 nm. There was a strong correlation among the diameters, wall thicknesses, and lengths of the NTs and tip Ge NP sizes, indicating the role of molten Ge NPs as catalyst seeds for the precipitation of SiOx in a vapor–liquid–solid growth mechanism at high temperature. The SiOx precipitation quantities from the seed NPs for the NTs were compared with those of amorphous SiOx nanowires (NWs) at 0.1–0.9 MPa to clarify the growth mechanism of the NTs. We argue that smaller precipitation quantities of SiOx than those for the NWs play a critical role in the formation of cap structures with different sizes and shapes from the molten Ge NPs and the growth of the NTs.
关键词: Laser vaporization,Germanium catalyst,Silicon oxide,Nanotube,Nanowire
更新于2025-09-23 15:23:52
-
Liquid Crystals - Self-Organized Soft Functional Materials for Advanced Applications || Binary Mixture Composed of Nematic Liquid Crystal and Carbon Nanotubes: A Theoretical Description
摘要: Based on the phenomenological model first presented by van der Schoot et al., which predicts the alignment of carbon nanotube (CNT) dispersions in thermotropic nematic liquid crystals, we present the extensive results concerning the phase diagram and the orientational properties of the mixture in this chapter.
关键词: phase transition,liquid crystal,carbon nanotube
更新于2025-09-23 15:23:52
-
Low-power-consumption Fiber-optic Anemometer based on Long-period Grating with SWCNT Coating
摘要: We report a low-power-consumption fiber-optic 'hot wire' anemometer (HWA) based on long-period grating (LPG) with single-wall carbon nanotubes (SWCNTs) coating. A uniform SWCNT film is deposited on a bare LPG acting as both light coupling and sensing element. By carefully selecting the order of the cladding mode and operating wavelength, the LPG shows a much higher temperature sensitivity than that of a regular fiber Bragg grating (FBG). Besides, SWCNT is a single-wall cylindrical nanostructure material with excellent absorption in the infrared range and high thermal conductivity. Due to these two features, the proposed sensor has extremely low power consumption and simple operation by utilizing a broadband light source (BBS) as both heating source and probing light source. A sensitivity of 102.5 pm/(m/s) at the wind speed of 1 m/s was obtained experimentally with 1.6-μm-thick SWCNT film.
关键词: Temperature.,Fiber-optic anemometer,long-period fiber grating,Carbon nanotube
更新于2025-09-23 15:23:52
-
Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays
摘要: Efficient charge separation is essential for improving the photo-conversion efficiency in both photocatalytic and photoelectrochemical (PEC) water splitting. Herein, we have demonstrated the selective spatial-construction of Au nanolayer and SrTiO3 nanocubes on inner and outer surfaces of TiO2 nanotubes for enhancing the charge separation and PEC activity. More specifically, the outer SrTiO3 nanocubes with a spontaneous ferroelectric polarization could effectively engineer the electrical band bending of TiO2 nanotubes, facilitating hole transfer to the electrode/electrolyte interface for water oxidation. Meanwhile, the inner Au nanolayer with a favorable plasmonic electric-field induced by the visible light promote charge separation and rapid electron transfer to the counter electrode for hydrogen generation. Benefiting from the spatial dual-electric fields, this SrTiO3/TiO2/Au ternary-photoanode exhibits a significantly enhanced photocurrent density of 2.11 mA cm?2 at 1.23 V (vs. RHE), which is nearly 3.5 times higher than that of the pristine TiO2 nanotube arrays. Additionally, a low onset potential (~ 0.17 VRHE) for water oxidation as well as an excellent PEC stability has also been achieved. These demonstrations may provide a new strategy toward the rational construction of highly efficient PEC water splitting systems.
关键词: TiO2 nanotube,Water splitting,Plasmonic,Ferroelectric
更新于2025-09-23 15:23:52
-
Carbon Nanotube-Supported Cu <sub/>3</sub> P as High-Efficiency and Low-Cost Cocatalysts for Exceptional Semiconductor-Free Photocatalytic H <sub/>2</sub> Evolution
摘要: Developing an inexpensive and high-efficiency hydrogen-production cocatalyst to replace the noble metal Pt remains a big challenge in the fields of sustainable photocatalytic hydrogen evolution. Herein, we report the exploration of a high-efficient binary noble metal free Cu3P-CNT H2-evolution cocatalyst by direct high-temperature phosphatizing of Cu(OH)2-CNT. Impressively, combining the advantages of noble metal free Cu3P and carbon nanotube (CNT), the binary Cu3P-CNT cocatalysts show high-efficient photocatalytic H2 evolution in Eosin Y(EY)-contained semiconductor-free photocatalytic systems. The maximum visible-light H2-generation rate for promising EY-Cu3P-CNT systems was 17.22 mmolg-1h-1. The highest apparent quantum efficiency (AQE) could reach 10.23% at 500 nm. More importantly, we found that the separation of photogenerated electrons and holes in the Eosin Y, the efficiency of electron transfer from EY to the active edge sites of Cu3P, and the electrocatalytic H2-evolution activity of Cu3P, could be simultaneously boosted via readily adding the conductive CNT, thus achieving the significantly improved photocatalytic H2 evolution. This work provides a simple and facile strategy to design highly efficient semiconductor-free photocatalytic proton-reduction systems using high-activity transition metal phosphides (TMPs) and inexpensive carbon nanomaterials.
关键词: Photocatalytic Hydrogen Evolution,noble metal-free Cu3P Co-catalysts,Solar Fuel,Carbon nanotube (CNT),Dye sensitization
更新于2025-09-23 15:23:52