修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

274 条数据
?? 中文(中国)
  • Deterministic switching of the growth direction of self-catalyzed GaAs nanowires

    摘要: Typical vapor-liquid-solid growth of nanowires is restricted to vertical one-dimensional geometry, while there is a broad interest for more complex structures in the context of electronics and photonics applications. Controllable switching of the nanowire growth direction opens up new horizons in the bottom-up engineering of self-assembled nanostructures, for example, to fabricate interconnected nanowires used for quantum transport measurements. In this work, we demonstrate a robust and highly controllable method for deterministic switching of the growth direction of self-catalyzed GaAs nanowires. The method is based on the modification of the droplet-nanowire interface in the annealing stage without any fluxes and subsequent growth in the horizontal direction by a twin-mediated mechanism with indications of a novel type of interface oscillations. A 100% yield of switching the nanowire growth direction from vertical to horizontal is achieved by systematically optimizing the growth parameters. A kinetic model describing the competition of different interface structures is introduced to explain the switching mechanism and the related nanowire geometries. The model also predicts that growth of similar structures is possible for all vapor-liquid-solid nanowires with commonly observed truncated facets at the growth interface.

    关键词: Growth direction,Surface energetics,Self-catalyzed GaAs nanowires,Crystal facets

    更新于2025-09-04 15:30:14

  • Nickel Nanowires Combined with Surface-Enhanced Raman Spectroscopy: Application in Label-Free Detection of Cytochrome c-Mediated Apoptosis

    摘要: Intrinsic properties of nickel have enabled its wide applications as an effective catalyst. In this study, nickel nanowires (Ni NWs) as electron donors for oxidized cytochrome c (Cyt c) are investigated, which are NW diameter, temperature, and pH value-dependent. The reductive and magnetic properties facilitate the Ni NWs to rapidly and conveniently reduce Cyt c in complicated biological samples. Moreover, we find that the Ni NWs combined with resonance Raman spectroscopy have specificity towards Cyt c detection in real biological samples, which is successfully used to distinguish the redox state of the released Cyt c from isolated mitochondria in apoptotic Hela cells. Moreover, rapid label-free Cyt c quantification can be achieved by surface-enhanced Raman spectroscopy with a limit of detection range of 1 nM and long concentration linear (1nM?1μM). The proposed Ni NWs-based reduction approach will significantly simplify the traditional biological methods and has great potential in the application of Cyt c-related apoptotic studies.

    关键词: nickel nanowires,surface-enhanced Raman spectroscopy,cytochrome c,label-free detection,apoptosis

    更新于2025-09-04 15:30:14

  • Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows

    摘要: Transparent conductive electrodes (TCEs) based on hybrid structures (silver nanowires) have been compressively reconnoitered in next-generation electronics such as flexible displays, artificial skins, smart windows, and sensors, owing to their admirable conductivity as well as flexibility, which make them favorable substitutes to replace ITO (Indium Tin Oxide) as a transparent conductor. Nevertheless, silver-based TCEs grieve from poor stability owing to the corrosion and oxidation of silver in electrolytes. To overcome these issues, a RGO (Reduced Graphene Oxide) layer on silver was promote to resolve the difficulties of corrosion and oxidation in the electrolyte. Moreover, we successfully designed and demonstrated low-voltage WO3-based electrochromic devices (ECDs) with fabricated hybrid TCEs. The hybrid electrodes with RGO/silver nanowires/metal grid/PET (RAM) electrode exhibited improvements in the switching stability and optoelectronic properties, such as the sheet resistance (0.714 ohm/sq), as well as optical transparency of 90.9%. The coloration and bleaching behavior of the ECD was observed in an applied low-voltage range of -1.0 to 0.0 V with a maximum optical difference of 72% at 700 nm, which yielded a coloration efficiency (η) of ~33.4 cm2/C. The highly conductive hybrid TCEs exhibit favorable features for numerous embryonic flexible electronics and optoelectronic devices.

    关键词: Oxidation,Silver nanowires,Electrochromic devices,Reduced graphene oxide,Corrosion

    更新于2025-09-04 15:30:14

  • Highly Stable Luminous “Snakes” from CsPbX3 Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires

    摘要: CsPbX3 (X=Cl, Br and I) perovskite nanocrystals (NCs) are known for their exceptional optoelectronic properties, yet the material’s instability towards polar solvents, heat or UV irradiation greatly limits its further applications. Herein, an efficient in-situ growing strategy has been developed to give highly stable perovskite NC composites (abbr. CsPbX3@CA-SiO2) by anchoring CsPbX3 NCs onto silica nanowires (NWs), which effectively depresses the optical degradation of their photoluminescence (PL) and enhances stability. The preparation of surface-functionalized serpentine silica NWs is realized by a sol-gel process involving hydrolysis of a mixture of tetraethylorthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES) and trimethoxy(octadecyl)silane (TMODS) in a water/oil emulsion. The serpentine NWs are formed via an anisotropic growth with lengths up to 8 μm. The free amino groups are employed as surface ligands for growing perovskite NCs, yielding distributed monodisperse NCs (~8 nm) around the NW matrix. The emission wavelength is tunable by simple variation of the halide compositions (CsPbX3, X=Cl, Br or I) and the composites demonstrate a high photoluminescence quantum yield (PLQY 32-69%). Additionally, we have demonstrated the composites CsPbX3@CA-SiO2 can be self-woven to form a porous 3D hierarchical NWs membrane, giving rise to a superhydrophobic surface with hierarchical micro/nano structural features. The resulting composites exhibit high stability towards water, heat and UV irradiation. This work elucidates an effective strategy to incorporate perovskite nanocrystals onto functional matrices as multifunctional stable light sources.

    关键词: colloidal CsPbX3 nanocrystal,superhydrophobic,photostability,assembled hierarchical membrane,serpentine silica nanowires

    更新于2025-09-04 15:30:14