- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Research on feature point extraction and matching machine learning method based on light field imaging
摘要: At present, there are many methods to realize the matching of specified images with features, and the basic components include image feature point detection, feature description, and image matching. Based on this background, this article has done different research and exploration around these three aspects. The image feature point detection method is firstly studied, which commonly include image edge information-based feature detection method, corner information-based detection method, and various interest operators. However, all of the traditional detection methods are involved in problems of large computation burden and time consumption. In order to solve this problem, a feature detection method based on image grayscale information-FAST operator is used in this paper, which is combined with decision tree theory to effectively improve the speed of extracting image feature points. Then, the feature point description method BRIEF operator is studied, which is a local expression of detected image feature points based on descriptors. Since the descriptor does not have rotation invariance, the detection operator is endowed by a direction that is proposed in this paper, and then the local feature description is conducted on the feature descriptor to generate a binary string array containing direction information. Finally, the feature matching machine learning method is analyzed, and the nearest search method is used to find the nearest feature point pair in Euclidean distance, of which the calculation burden is small. The simulation results show that the proposed nearest neighbor search and matching machine learning algorithm has higher matching accuracy and faster calculation speed compared with the classical feature matching algorithm, which has great advantages in processing a large number of array images captured by the light field camera.
关键词: Nearest neighbor search,Light field imaging,Image matching,Machine learning
更新于2025-09-23 15:23:52
-
[IEEE 2019 Compound Semiconductor Week (CSW) - Nara, Japan (2019.5.19-2019.5.23)] 2019 Compound Semiconductor Week (CSW) - $\mathbf{1545}\ \mu \mathbf{m}$ Quantum Dot Vertical Cavity Surface Emitting Laser with low threshold
摘要: Approximate Nearest Neighbor (ANN) search has become a popular approach for performing fast and efficient retrieval on very large-scale datasets in recent years, as the size and dimension of data grow continuously. In this paper, we propose a novel vector quantization method for ANN search which enables faster and more accurate retrieval on publicly available datasets. We define vector quantization as a multiple affine subspace learning problem and explore the quantization centroids on multiple affine subspaces. We propose an iterative approach to minimize the quantization error in order to create a novel quantization scheme, which outperforms the state-of-the-art algorithms. The computational cost of our method is also comparable to that of the competing methods.
关键词: vector quantization,Approximate nearest neighbor search,subspace clustering,large-scale retrieval,binary codes
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Atomic Layer Deposited Al <sub/>x</sub> Ni <sub/>y</sub> O as Hole Selective Contact for Silicon Solar Cells
摘要: Approximate Nearest Neighbor (ANN) search has become a popular approach for performing fast and efficient retrieval on very large-scale datasets in recent years, as the size and dimension of data grow continuously. In this paper, we propose a novel vector quantization method for ANN search which enables faster and more accurate retrieval on publicly available datasets. We define vector quantization as a multiple affine subspace learning problem and explore the quantization centroids on multiple affine subspaces. We propose an iterative approach to minimize the quantization error in order to create a novel quantization scheme, which outperforms the state-of-the-art algorithms. The computational cost of our method is also comparable to that of the competing methods.
关键词: vector quantization,Approximate nearest neighbor search,subspace clustering,large-scale retrieval,binary codes
更新于2025-09-23 15:19:57
-
[IEEE 2019 International Conference on Signal Processing and Communication (ICSC) - NOIDA, India (2019.3.7-2019.3.9)] 2019 International Conference on Signal Processing and Communication (ICSC) - Fabrication of CZTS Thin Films based Solar Cells using Vacuum Deposition Techniques: A Status Review
摘要: For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
关键词: big data,Nearest neighbor search,approximate search,algorithm configuration
更新于2025-09-19 17:13:59