- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Identification of the Pain Process by Cold Stimulation: Using Dynamic Causal Modeling of Effective Connectivity in Functional Near-Infrared Spectroscopy (fNIRS)
摘要: Background: Pain is an unpleasant sensory and emotional experience followed by anxiety, depression, and frustration. Functional Near-Infrared Spectroscopy (fNIRS) as an optical technique identifies the brain functional networks by investigating connectivity between functionally linked of different anatomical regions in response to pain stimulation. Methods: In this research, fNIRS was performed in order to study the difference in effective functional connectivity of the brain prefrontal cortex between the two modes of pain and rest based on the dynamic causal modeling (DCM) method. Effective functional connectivity changes in the prefrontal cortex between pain and rest states were calculated using DCM approach to investigate (1) areas known for pain sensation and (2) to analyze inter-network functional connectivity strength (FCS) by selecting several brain functional networks based on the analysis findings. All analyses were performed using toolboxes SPM-fNIRS and SPM8, Matlab software. Results: Regional hemodynamics changes caused deoxyhemoglobin concentration to decrease in the prefrontal cortex of both hemispheres, particularly on the right side. We found a simultaneous increase in the concentration of oxyhemoglobin in the prefrontal cortex of the left hemisphere in comparison to the right hemisphere, that there was a trend toward reduction in oxyhemoglobin concentration. The results indicate that during the cold pain stimulation, the connectivities between prefrontal cortex regions were significantly changed. Specifically, a significantly consistent increase in the RPFC to MPFC connectivity was found while a significant consistent decrease was observed in the both MPFC to LPFC and LPFC to MPFC connectivities. Conclusion: This study contributes to the pain research field to identify the directionality and causality of neuronal connections in the prefrontal cortex by applying DCM to fNIRS data. The results suggest that the proposed method infers directional interactions between hidden neuronal states in the brain under neuronal dynamic conditions based on optical density changes measurement.
关键词: Diagnosing pain,Neurology,Effective connectivity,Brain mapping,Dynamic causal modeling,fNIRS,Pain
更新于2025-09-19 17:15:36
-
Microvascular blood flow velocities measured with a retinal function imager: inter-eye correlations in healthy controls and an exploration in multiple sclerosis
摘要: Background: The retinal microcirculation has been studied in various diseases including multiple sclerosis (MS). However, inter-eye correlations and potential differences of the retinal blood flow velocity (BFV) remain largely unstudied but may be important in guiding eye selection as well as the design and interpretation of studies assessing or utilizing retinal BFV. The primary aim of this study was to determine inter-eye correlations in BFVs in healthy controls (HCs). Since prior studies raise the possibility of reduced BFV in MS eyes, a secondary aim was to compare retinal BFVs between MS eyes, grouped based on optic neuritis (ON) history and HC eyes. Methods: Macular arteriole and venule BFVs were determined using a retinal function imager (RFI) in both eyes of 20 HCs. One eye from a total of 38 MS patients comprising 13 eyes with ON (MSON) and 25 eyes without ON (MSNON) history were similarly imaged with RFI. Results: OD (right) and OS (left) BFVs were not significantly different in arterioles (OD: 3.95 ± 0.59 mm/s; OS: 4.08 ± 0.60 mm/s, P = 0.10) or venules (OD: 3.11 ± 0.46 mm/s; OS: 3.23 ± 0.52 mm/s, P = 0.06) in HCs. Very strong inter-eye correlations were also found between arteriolar (r = 0.84, P < 0.001) and venular (r = 0.87, P < 0.001) BFVs in HCs. Arteriolar (3.48 ± 0.88 mm/s) and venular (2.75 ± 0.53 mm/s) BFVs in MSNON eyes were significantly lower than in HC eyes (P = 0.009 and P = 0.005, respectively). Similarly, arteriolar (3.59 ± 0.69 mm/s) and venular (2.80 ± 0.45 mm/s) BFVs in MSON eyes were also significantly lower than in HC eyes (P = 0.046 and P = 0.048, respectively). Arteriolar and venular BFVs in MSON and MSNON eyes did not differ from each other (P = 0.42 and P = 0.48, respectively). Conclusions: Inter-eye arteriolar and venular BFVs do not differ significantly in HCs and are strongly correlated. Our findings support prior observations that arteriolar and venular BFVs may be reduced in MS eyes. Moreover, this seems to be the case in both MS eyes with and without a history of ON, raising the possibility of global blood flow alterations in MS. Future larger studies are needed to assess differences in BFVs between MSON and MSNON eyes.
关键词: Blood flow velocity,Neurology,Multiple sclerosis,Optic neuropathy,Inter-eye correlation,Retinal function imager
更新于2025-09-11 14:15:04