- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors
摘要: The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) layered materials, typically molybdenum disulfide (MoS2) nanosheets, are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.
关键词: Nitrogen dioxide,Room temperature,Gas sensor,Molybdenum disulfide,Quantum dot
更新于2025-09-23 15:19:57
-
V2O5 Thin Films as Nitrogen Dioxide Sensors ?
摘要: Vanadium pentoxide thin films were deposited onto insulating support by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. X-ray diffraction at glancing incidence (GIXD) and Scanning Electronic Microscopy (SEM) were used for structural and phase characterization. Thickness of the films was determined by the profilometry. It has been confirmed by GIXD that the deposited films are composed of V2O5 phase. The gas sensing properties of V2O5 thin films were investigated at temperatures from range 410–617 K upon NO2 gas of 4–20 ppm. The investigated material exhibited good response and reversibility towards nitrogen dioxide. The effect of metal-insulator transition (MIT) on sensor performance has been observed and discussed for the first time. It was found that a considerable increase of the sensor sensitivity occured above 545 K, which is related to postulated metal-insulator transition.
关键词: reactive sputtering,vanadium pentoxide,metal-insulator transition (MIT),electrical properties,thin film,gas sensor,nitrogen dioxide
更新于2025-09-10 09:29:36
-
PbS Nanowires-on-Paper Sensors for Room-Temperature Gas Detection
摘要: Paper-based gas sensors represent an emerging important class of devices in flexible electronics. Colloidal nanocrystals unite large surface-to-volume ratio with excellent solution processability, offering avenues to high-performance paper-based gas sensors. One of the factors limiting the performance of paper-based gas sensors is the sphere-like morphology of semiconductor nanocrystals, making it difficult to construct a stable sensing network to ensure efficient carrier transport and mechanical robustness. Here we demonstrated sensitive and flexible gas sensor via the spray-coating of PbS nanowires onto paper substrates at room temperature. The pencil-drawn graphite electrode was employed to simplify the sensor design and fabrication. Unlike the sphere-like PbS nanocrystals that usually assemble into compact thin-film solids, the PbS nanowires-on-paper sensor exhibits a porous network microstructure which not only offers efficient pathway for gas adsorption and diffusion, but possesses inherent flexibility for superior mechanical bendability. The response of the PbS nanowires-on-paper sensor toward 50 ppm of NO2 at room temperature was 17.5, with the response and recovery time being 3 s and 148 s respectively. The sensor shows only a slight decrease in response (6% of the initial value) and identical temporal response when subject to 500 bending and unbending cycles. The competitive adsorption of NO2 with O2 on PbS surfaces is proposed as the sensing mechanism accounts for the high sensitivity and good reversibility at room temperature. Our results highlight the significance of the solution-processable nanowires as the ideal building blocks for the flexible paper-based gas sensors.
关键词: Paper substrate,Nanowires,Lead sulfide,Gas sensor,Nitrogen dioxide
更新于2025-09-10 09:29:36
-
A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor
摘要: We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361–389 and 438–468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.
关键词: broadband cavity enhanced absorption spectroscopy,water vapor,nitrous acid,methylglyoxal,aircraft measurements,glyoxal,nitrogen dioxide
更新于2025-09-09 09:28:46