修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • [IEEE 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) - Stuttgart, Germany (2018.11.20-2018.11.22)] 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) - 3D Point Cloud Coarse Registration based on Convex Hull Refined by ICP and NDT

    摘要: Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registration refined by two algorithms applied on projected points.Firstly,the proposed approach uses a statistical method to find the best plane that represents each point cloud. Secondly, all the points of each cloud are projected onto the corresponding planes. Then, two convex hulls are extracted from the two projected point sets and then matched optimally. Next, the non-rigid transformation from the reference to the model is robustly estimated through minimizing the distance between the matched point's pairs of the two convex hulls.Finally, this transformation estimation is refined by two methods. The first one is the refinement of coarse registration by Iterative Closest Point (ICP). The second one consists of the refinement of coarse registration by the Normal Distribution Transform (NDT). An experimental study ,carried out on several clouds, shows that the refinement of coarse registration with ICP gives, in the most cases, a better result than refinement with NDT.

    关键词: Iterative Closest Point (ICP),Convex Hull,Normal Distribution Transform (NDT),Non rigid registration,3D point cloud,Principal Component Analysis (PCA)

    更新于2025-09-23 15:22:29

  • NRLI-UAV: Non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement

    摘要: Accurate registration of light detection and ranging (LiDAR) point clouds and images is a prerequisite for integrating the spectral and geometrical information collected by low-cost unmanned aerial vehicle (UAV) systems. Most registration approaches take the directly georeferenced LiDAR point cloud as a rigid body, based on the assumption that the high-precision positioning and orientation system (POS) in the LiDAR system provides sufficient precision, and that the POS errors are negligible. However, due to the large errors of the low-precision POSs commonly used in the low-cost UAV LiDAR systems (ULSs), dramatic deformation may exist in the directly georeferenced ULS point cloud, resulting in non-rigid transformation between the images and the deformed ULS point cloud. As a result, registration may fail when using a rigid transformation between the images and the directly georeferenced LiDAR point clouds. To address this problem, we proposed NRLI-UAV, which is a non-rigid registration method for registration of sequential raw laser scans and images collected by low-cost UAV systems. NRLI-UAV is a two-step registration method that exploits trajectory correction and discrepancy minimization between the depths derived from structure from motion (SfM) and the raw laser scans to achieve LiDAR point cloud quality improvement. Firstly, the coarse registration procedure utilizes global navigation satellite system (GNSS) and inertial measurement unit (IMU)-aided SfM to obtain accurate image orientation and corrects the errors of the low-precision POS. Secondly, the fine registration procedure transforms the original 2D-3D registration to 3D-3D registration. This is performed by setting the oriented images as the reference, and iteratively minimizing the discrepancy between the depth maps derived from SfM and the raw laser scans, resulting in accurate registration between the images and the LiDAR point clouds. In addition, an improved LiDAR point cloud is generated in the mapping frame. Experiments were conducted with data collected by a low-cost UAV system in three challenging scenes to evaluate NRLI-UAV. The final registration errors of the images and the LiDAR point cloud are less than one pixel in image space and less than 0.13 m in object space. The LiDAR point cloud quality was also evaluated by plane fitting, and the results show that the LiDAR point cloud quality is improved by 8.8 times from 0.45 m (root-mean-square error [RMSE] of plane fitting) to 0.05 m (RMSE of plane fitting) using NRLI-UAV, demonstrating a high level of automation, robustness, and accuracy.

    关键词: Low-cost,Light detection and ranging (LiDAR),Unmanned aerial vehicle (UAV),Image sequence,Non-rigid registration

    更新于2025-09-11 14:15:04

  • Accelerating multi-modal image registration using a supervoxel-based variational framework

    摘要: For the successful completion of medical interventional procedures, several concepts, such as daily positioning compensation, dose accumulation or delineation propagation, rely on establishing a spatial coherence between planning images and images acquired at different time instants over the course of the therapy. To meet this need, image-based motion estimation and compensation relies on fast, automatic, accurate and precise registration algorithms. However, image registration quickly becomes a challenging and computationally intensive task, especially when multiple imaging modalities are involved. In the current study, a novel framework is introduced to reduce the computational overhead of variational registration methods. The proposed framework selects representative voxels of the registration process, based on a supervoxel algorithm. Costly calculations are hereby restrained to a subset of voxels, leading to a less expensive spatial regularized interpolation process. The novel framework is tested in conjunction with the recently proposed EVolution multi-modal registration method. This results in an algorithm requiring a low number of input parameters, is easily parallelizable and provides an elastic voxel-wise deformation with a subvoxel accuracy. The performance of the proposed accelerated registration method is evaluated on cross-contrast abdominal T1/T2 MR-scans undergoing a known deformation and annotated CT-images of the lung. We also analyze the ability of the method to capture slow physiological drifts during MR-guided high intensity focused ultrasound therapies and to perform multi-modal CT/MR registration in the abdomen. Results have shown that computation time can be reduced by 75% on the same hardware with no negative impact on the accuracy.

    关键词: multi-modal registration,non-rigid registration,supervoxel,variational method

    更新于2025-09-10 09:29:36