修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Fill Factor Loss in Fielded Photovoltaic Modules Due to Metallization Failures, Characterized by Luminescence and Thermal Imaging

    摘要: During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young’s modulus was calculated and its radial pro?le was correlated to the corresponding burnup pro?le and to the hardness radial pro?le data obtained by Vickers micro-indentation

    关键词: Nuclear fuels,piezoelectric devices,Vickers microhardness,Young’s modulus,nuclear power

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - In-situ Microscopy Characterization of Cu(In,Ga)Se <sub/>2</sub> Potential-Induced Degradation

    摘要: During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young’s modulus was calculated and its radial pro?le was correlated to the corresponding burnup pro?le and to the hardness radial pro?le data obtained by Vickers micro-indentation

    关键词: Nuclear fuels,piezoelectric devices,Vickers microhardness,Young’s modulus,nuclear power

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Rough and Straightforward Estimation of the Mismatching Loss by Partial Shading of the PV Modules Installed on an Urban Area or Car-Roof

    摘要: During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young’s modulus was calculated and its radial pro?le was correlated to the corresponding burnup pro?le and to the hardness radial pro?le data obtained by Vickers micro-indentation

    关键词: Nuclear fuels,piezoelectric devices,Vickers microhardness,Young’s modulus,nuclear power

    更新于2025-09-19 17:13:59

  • Multifunctional p‐Type Carbon Quantum Dots: a Novel Hole Injection Layer for High‐Performance Perovskite Light‐Emitting Diodes with Significantly Enhanced Stability

    摘要: Excess electrons from intrinsic oxygen vacancies play a key role in the surface chemistry and catalytic properties of metal oxides. This effect in actinide dioxides is particularly critical (AnO2), the most common nuclear fuels, where radiation can induce the formation of vacancies. However, the behavior of excess electrons on AnO2 surfaces has not been fully explored. In this article, we present a first-principle study of the electronic structure of excess electrons from oxygen vacancies on AnO2 (111) surfaces (An = Th, U, Pu). The low-energy solutions for the excess electrons are searched via U-ramping and occupation matrix control. The excess electrons are found to localize at the vacancy site on ThO2 and move to the metal 5f orbitals on the PuO2 surface, with UO2 as the intermediate case. This change significantly affects the catalytic properties of the AnO2 surfaces. In the presence of water, the excess electrons lead to the exothermic splitting of H2O and formation of molecular H2 on ThO2 and UO2 surfaces, while on the PuO2 surface the formation of H2 is thermodynamically unfavorable. This work has vital implications in the surface chemistry and corrosion of AnO2 and hence the handling and long-term storage of spent nuclear fuels.

    关键词: oxygen vacancies,catalytic properties,nuclear fuels,excess electrons,actinide dioxides,water splitting

    更新于2025-09-11 14:15:04