修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Chemical Sensing Performance of Flower-Like ZnO/PSi Nanostructures via Electrochemical Impedance Spectroscopy Technique

    摘要: ZnO nanostructures were synthesized on porous Si (PSi) structures using a method developed by this study known as electric field-assisted aqueous solution technique. The detailed characterization of this nanostructure was performed using atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction, room-temperature photoluminescence and Raman spectroscopy. Electrochemical impedance spectroscopy (EIS) technique was used to detect two classifications of chemical solvents, namely polar and non-polar solvents. Nyquist plots in EIS were utilized to detect chemical solvents (ethanol, acetone, toluene and benzene) exposed to ZnO/PSi nanostructure arrays. The results showed that the grown flower-like ZnO nanostructure arrays served as good chemical sensors with high sensitivity and low power consumption. Meanwhile, the ZnO/PSi nanoflowers exposed to ethanol showed the highest sensitivity (94.6% response) compared to other chemical solutions with the least response exhibited by benzene (68.4% response). It was postulated that the interaction between the solution and oxygen species of ZnO/PSi nanostructure surface induced a resistance change resulting in the release of free electrons that migrated to the conduction band of ZnO/PSi nanoflower structures and reduced the number of surface-adsorbed oxygen species. Subsequently, the changes observed in the Nyquist semicircle diameter and Warburg impedance led to the chemical sensing response.

    关键词: ZnO/PSi nanoflower,electric field-assisted aqueous solution technique,Chemical sensors,electrochemical impedance spectroscopy,Nyquist plot

    更新于2025-09-23 15:23:52

  • Electrical Properties of Metal-Porous GaAs Structure at Water Adsorption

    摘要: This paper reports the morphological, optical, luminescent and electrical properties of electrochemically made porous GaAs in order to evaluate their humidity sensing performance. The obtained porous GaAs exhibits non-homogenous surface morphology, which consists of pyramid-shaped crystallites and micropores. Photoluminescent and FTIR study shows that the surface of such material is covered by an oxide of As and Ga. The impedance spectroscopy was applied to analyze the influence of water vapor on electrical properties of metal-porous GaAs. It was shown that water adsorption results in the Nyquist plots shift to the region of higher frequencies. In humid atmosphere resistance Rv and characteristic time of charge accumulation s are decreased by 1.4 times and 5 times, respectively; resistance Rb and capacity Cb decreased by 1.4 times and 4.4 times, respectively. The response of the metal-porous GaAs structure to the adsorption of water is attributed to the decreasing of the bulk resistivity and potential barrier height. The formed oxide layer on the surface of porous GaAs plays a dual role—it increases the ability to adsorb water molecules and prevents the surface from receiving structural degradation.

    关键词: SEM,DRIFT spectrum,impedance spectroscopy,Nyquist plot,Porous GaAs,humidity sensor

    更新于2025-09-19 17:15:36