- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Structure and photocatalytic oxidation desulfurization performance of CeO2/HTi2NbO7-NS nanocomposite
摘要: CeO2/HTi2NbO7-NS nanocomposite based on HTi2NbO7 nanosheet (HTi2NbO7-NS) and Cerium dioxide nanoparticles (CeO2-NPs) was fabricated through an exfoliation-restructuring method. The as-prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), laser Raman Spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (UV-Vis DRS) and N2 adsorption-desorption measurements. The adsorption and photocatalytic properties of the as-prepared samples were evaluated using ethyl mercaptan (EM) in methane gas as the model pollutant. The results indicated that CeO2-NPs were uniformly distributed on the surface of HTi2NbO7-NS and the band gap energy of CeO2/HTi2NbO7-NS nanocomposite was reduced compared with its precursor. The type-Ⅱ heterojunction was formed due to suitable band structures of host and guest materials. The CeO2/HTi2NbO7-NS nanocomposite owns the best adsorption capacity and photocatalytic oxidation activity, which was mainly attributed to the lower band gap and efficient separation of electron-hole pairs of CeO2/HTi2NbO7-NS nanocomposite.
关键词: CeO2/HTi2NbO7-NS,ethyl mercaptan (EM),exfoliation-restructuring,photocatalytic oxidation,type-Ⅱ heterojunction
更新于2025-09-23 15:23:52
-
In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH p-n heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation
摘要: The poor charge separation of single-component semiconductor photocatalysts greatly restrains their practical application. Herein, we report an in situ anion-exchange strategy to controllably fabricate sunlight-driven p-n heterostructure photocatalyst BiOCl/BiOCOOH. In this synthetic process, the BiOCOOH microspheres not only act as the support to form heterostructures but also as Bi3+ supplier to generate BiOCl. Such an in situ anion-exchange route thus brought about the homogeneous distribution of BiOCl on the surface of BiOCOOH with tight interfacial contact. Under simulated solar illumination, the obtained BiOCl/BiOCOOH catalysts with p-n heterostructures show exceedingly superior photocatalytic activity against toxic pollutant (MO dye and TC antibiotic) to BiOCOOH and BiOCl. The optimal BiOCl/BiOCOOH, S3 sample has the highest photocatalytic activity with MO degradation rate constant of 0.0599 min?1, 2.9 or 9.7 folds higher than that of BiOCOOH or BiOCl. The alleviated charge separation and transfer as well as the flower-like structure mainly account for the enhanced performance. Radical scavenging experiments indicate that holes, ?OH and ?O2? collaboratively contribute to the degradation of pollutants. This work provides a novel sunlight-driven p-n heterojunction photocatalyst of BiOCl/BiOCOOH for wastewater treatment.
关键词: Anion exchange,Sunlight,BiOCl/BiOCOOH,Photocatalysis,p-n heterojunction
更新于2025-09-23 15:23:52
-
Contactless parametric characterization of bandgap engineering in p-type FinFETs using spectral photon emission
摘要: In the last decade it has become increasingly popular to use germanium enriched silicon in modern field effect transistors (FET) due to the higher intrinsic mobility of both holes and electrons in SiGe as compared to Si. Whether used in the source/drain region (S/D) as compressive stressor, which is an efficient mobility booster on Si channel devices, or as channel material, the SiGe increases channel carrier mobility and thus enhancing device performance. Because the germanium content modifies the effective bandgap energy EG, this material characteristic is an important technology performance parameter. The bandgap energy can be determined in an LED-like operation of electronic devices, requiring forward biased p-n junctions. P-n junctions in FETs are source or drain to body diodes, usually grounded or reversely biased. This investigation applies a bias to the body that can trigger parasitic forward operation of the source/drain to body p-n junction in any FET. Spectral photon emission (SPE) is used here as a non-destructive method to characterize engineered bandgaps in operative transistor devices, while the device remains fully functional. Before applying the presented technique to a p-type FinFET device, it is put to the proof by verifying the nominal silicon bandgap on an (unstrained) 120 nm technology FET. Subsequently the characterization capability for bandgap engineering is then successfully demonstrated on a SiGe:C heterojunction bipolar transistor (HBT). In a final step, the bandgap energy EG of a 14/16 nm p-type FinFET was determined to be 0.84 eV, which corresponds to a Si0.7Ge0.3 mixture. The presented characterization technique is a contactless fault isolation method that allows for quantitative local investigation of engineered bandgaps in p-type FinFETs.
关键词: p-n junction,Heterojunction bipolar transistor,Bandgap characterization,p-channel FinFET,SiGe, strained Si,Body diode, parasitic operation,Bandgap engineering,Body bias voltage,HBT,Contactless fault isolation,Spectral photon emission,MOSFET
更新于2025-09-23 15:23:52
-
Photocathodic hydrogen evolution from catalysed nanoparticle films prepared from stable aqueous dispersions of P3HT and PCBM
摘要: Photo-assisted hydrogen evolution is achieved on photocathodes comprising of nanoparticles of poly(3-hexylthiophene) (npP3HT) and nanoparticles of phenyl-C61-butyric acid methyl ester (npPCBM) onto which ultra-low loadings of Pt nanoparticles are deposited. The nanoparticles, npP3HT and npPCBM, are prepared individually via miniemulsion using surfactants of opposite head group polarity. Aqueous dispersions of npP3HT:npPCBM, devoid of organic solvent, are cast conformally onto ITO-coated glass to yield water-insoluble bulk-heterojunction films. Pt is deposited photoelectrochemically onto ITO/npP3HT:npPCBM photocathodes and found to nucleate preferentially on PCBM nanoparticles. ITO/npP3HT:npPCBM/Pt photocathodes produce 65 μA/cm2 photocurrent under 100 mW/cm2 of visible light at 0.0 VSHE and liberate H2 gas. The photocurrents observed for electrodes prepared using npP3HT:npPCBM are twice as large, and the onset potential is ~0.4 V more positive than analogous photocathodes cast from nanoparticles each comprising an intimate blend of P3HT and PCBM. These are encouraging results for large scale synthesis of organic photoelectrochemical devices, given the simplicity of the photoelectrode, i.e., prepared from aqueous solutions and devoid of vacuum-deposited films such as charge transport layers and protective films.
关键词: Polymer nanoparticle,Photoelectrochemistry,P3HT: PCBM bulk-heterojunction,Solar hydrogen generation,Organic semiconductor,Mini-Emulsion
更新于2025-09-23 15:23:52
-
Novel interfacial bulk heterojunction technique for enhanced response in ZnO nanogenerator
摘要: In this paper, a direct sustainable approach for the development of n-ZnO:p-CuO heterojunction (ZCH) through a simple grinding is reported to be an effective technique to enhance the piezoelectric performance of ZCH/PDMS nanocomposite-based nanogenerator (ZP-PNG). We have first optimized the best concentration for ZnO/PDMS nanocomposite for the realization of the piezoelectric nanogenerator. Later, with the same configuration, we implemented a novel, simple, facile, frugal and inexpensive technique to fabricate ZCH. The heterojunction results in the improved charge transfer characteristics, low capacitance and charge nullification contributing to the enhanced piezoelectric output. This reflects in the improvement of the peak to peak piezoelectric potential of the device from 2.7 V to 9V. The instantaneous max power density was found to be 0.2 mW/m2.The device can work as a force sensor with improved sensitivity of 1.7 V/N compared to 1.05 V/N of the intrinsic device. The device being systematically studied for load matching, and capacitor charging to demonstrate the practicability of the device. Furthermore, we tested our device to harness the biomechanical energy from day to day life activities. Finally, the device was used to fabricate sustainable piezoelectric based smart urinal (PSU) systems for low-income group countries.
关键词: composite,heterojunction,sustainable smart sensors,piezoelectric,ZnO
更新于2025-09-23 15:23:52
-
Interface Engineering of Au(111) for the Growth of 1T′-MoSe <sub/>2</sub>
摘要: Phase-controlled synthesis of two-dimensional transition metal dichalcogenides (TMDCs) is of great interest due to the distinct properties of the different phases. However, it is challenging to prepare metallic phase of group-VI TMDCs due to their metastability. At the monolayer level, interface engineering can be used to stabilize the metastable phase. Here, we demonstrate the selective growth of either single-layer 1H or 1T’-MoSe2 on Au(111) by molecular beam epitaxy; the two phases can be unambiguously distinguished using scanning tunnelling microscopy and spectroscopy. While the growth of 1H-MoSe2 is favourable on pristine Au(111), the growth of 1T’-MoSe2 is promoted by the pre-deposition of Se on Au(111). The selective growth of 1T’-MoSe2 phase on Se-pretreated Au(111) is attributed to Mo intercalation-induced stabilization of the 1T’ phase, which is supported by density functional theory calculations. In addition, 1T’ twin boundaries and 1H-1T’ heterojunctions were observed and found to exhibit enhanced tunnelling conductivity. The substrate pre-treatment approach for phase-controlled epitaxy should be applicable to other group-VI TMDCs grown on Au (111).
关键词: phase control,heterojunction,scanning tunnelling microscopy/spectroscopy,interface engineering,transition metal dichalcogenides,MoSe2
更新于2025-09-23 15:23:52
-
Photoelectrochemical hydrogen production from water splitting using heterostructured nanowire arrays of Bi2O3/BiAl oxides as a photocathode
摘要: To date, most metal oxide-based photocathodes used in photoelectrochemical cells for water splitting contain copper cations in its composition, which can be reduced to metal Cu under cathodic bias leading to deactivation of the photoelectrode. Here, a Cu-free photocathode composed by a ternary heterostructure of Bi2O3/Al2Bi24O39/Al2Bi48O75 nanowires is reported with a narrow band gap energy (1.83 eV) and suitable conduction band edge potential (?0.98 VRHE) for water reduction to hydrogen. Photoelectrochemical measurements display that the highest photocurrent density of ?4.85 mA cm?2 at 0 VRHE under simulated sunlight is achieved by tuning the Bi:Al molar ratio of photocathode to 21:1. The photocurrent onset potential of the Bi2O3/BiAl oxides photoelectrode was estimated to be 0.57 VRHE at pH 7, which is comparable to that of silicon. Controlled potential photoelectrolysis at 0 VRHE showed a stable photocurrent of about ?2 mA cm?2 for 2 h of continuous operation. The H2 measured at this time was 696 μmol cm?2, which corresponds to a Faradaic efficiency of 93%. Finally, this work gives a new generation of Cu-free photocathodes and demonstrates a promising future of BiAl oxides in constructing photoelectrochemical devices for water splitting.
关键词: Oxides,Solar energy,PEC cells,Water reduction,Spray pyrolysis,Heterojunction
更新于2025-09-23 15:23:52
-
Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity
摘要: A novel strontium titanate/binary metal sulfide (SrTiO3/SnCoS4) heterostructure was synthesized by a simple two-step hydrothermal method. The visible-light-driven photocatalytic performance of SrTiO3/SnCoS4 composites was evaluated in the degradation of methyl orange (MO) under visible light irradiation. The photocatalytic performance of SrTiO3/SnCoS4-5% is much higher than that of pure SrTiO3, SnCoS4, SrTiO3/SnS2 and SrTiO3/CoS2. The SrTiO3/SnCoS4 composite material with 5 wt.% of SnCoS4 showed the highest photocatalytic efficiency for MO degradation, and the degradation rate could reach 95% after 140 min irradiation time. The enhanced photocatalytic activity was ascribed to not only the improvement of visible light absorption efficiency, but also the construction of a heterostructure which make it possible to effectively separate photoexcited electrons and holes in the two-phase interface.
关键词: visible-light-driven,SnCoS4,heterojunction,degradation,SrTiO3
更新于2025-09-23 15:23:52
-
Probing interlayer excitons in a vertical van der Waals p-n junction using scanning probe microscopy technique
摘要: Two dimensional (2D) semiconductors feature exceptional optoelectronic properties controlled by strong confinement in one dimension. In this contribution, we studied interlayer excitons in a vertical p-n junction made of bilayer n-type MoS2 and few layers of p-type GaSe using current sensing atomic force microscopy (CSAFM). The p-n interface is prepared by mechanical exfoliation onto highly ordered pyrolytic graphite (HOPG). Thus the heterostructure creates an ideal layered system with HOPG serving as the bottom contact for the electrical characterization. Home-built Au tips are used as the top contact in CSAFM mode. During the basic diode characterization, the p-n interface shows strong rectification behavior with a rectification ratio of 104 at ±1 V. The I-V characteristics reveal pronounced photovoltaic effects with a fill factor of 0.55 by an excitation below the band gap. This phenomenon can be explained by the dissociation of interlayer excitons at the interface. The possibility of the interlayer exciton formation is indicated by density functional theory (DFT) calculations on this heterostructure: the valence band of GaSe and the conduction band of MoS2 contribute to an interface-specific state at an energy of about 1.5 eV. The proof of excitonic transitions to that state is provided by photoluminescence measurements at the p-n interface. Finally, photocurrent mapping at the interface under an excitation wavelength of 785 nm provides evidence of efficient extraction of such excitons. Our results demonstrate a pathway towards a two dimensional device for future optoelectronics and light harvesting assisted by interlayer excitons in a van der Waals heterostructure.
关键词: optoelectronics,van der Waals heterojunction,GaSe,density functional theory,MoS2,interlayer exciton,p-n junction
更新于2025-09-23 15:23:52
-
Layer-by-layer self-assembly of polyaniline nanofibers/TiO2 nanotubes heterojunction thin film for ammonia detection at room temperature
摘要: In this paper, for the first time, polyaniline nanofibers/TiO2 nanotubes (PANI/TiO2) heterojunction thin film has been prepared on Pt interdigital electrodes by layer-by-layer self-assembly method and applied in room temperature NH3 detection. It is found that the optimal self-assembly layer number is three (PANI/TiO2-3) compared to one layer (PANI/TiO2-1) and five layers (PANI/TiO2-5). The PANI/TiO2-3 thin film sensor possesses superior response characteristics compared with our other PANI based sensors, including higher response value (336%@5 ppm NH3), acceptable response/recovery time (110 s/1086 s@5 ppm NH3), low detection limit (0.5 ppm), and remarkable selectivity. The enhanced gas sensing performances could be ascribed to the tremendous variation of the carrier concentration caused by the p-n junctions as well as the increased specific surface area and pore volume. This work not only offers a superb strategy to fabricate heterojunction thin film but also accelerates the development of room-temperature operable NH3 sensors.
关键词: Ammonia detection,Layer-by-layer self-assembly,Polyaniline/TiO2 heterojunction,Thin film,Room temperature operation
更新于2025-09-23 15:23:52