- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Protection mechanisms of periphytic biofilm to photocatalytic nanoparticles (PNPs) exposure
摘要: Researchers are devoting great effort to combine photocatalytic nanoparticles (PNPs) with biological process to create efficient environmental purification technologies (i.e. intimately coupled photobiocatalysis). However, little information is available to illuminate the responses of multispecies microbial aggregates against PNP exposure. Periphytic biofilm, as a model multispecies microbial aggregate, was exposed to three different PNPs (CdS, TiO2, and Fe2O3) under Xenon lamp irradiation. There were no obvious toxic effects of PNP exposure on periphytic biofilm as biomass, chlorophyll content and ATPase activity were not negatively impacted. Enhanced production of extracellular polymetric substances (EPS) is the most important protection mechanism for periphytic biofilm against PNPs exposure. Although PNPs exposure produced extracellular superoxide radicals and caused intracellular reactive oxygen species (ROS) accumulation in periphytic biofilm, the interaction between EPS and PNPs could mitigate production of ROS while superoxide dismutase could alleviate biotic ROS accumulation in periphytic biofilm. The periphytic biofilms changed their community composition in the presence of PNPs by increasing the relative abundance of phototrophic and high nutrient metabolic microorganisms (Families Chlamydomonadaceae, Cyanobacteriacea, Sphingobacteriales and Xanthomonadaceae). This study provides insight into the protection mechanisms of microbial aggregates against simultaneous photogenerated and nanoparticle toxicity from PNPs.
关键词: community composition,EPS,reactive oxygen species,Periphytic biofilm,photocatalyst,nanoparticles
更新于2025-09-23 15:23:52
-
Augmenting nitrogen removal by periphytic biofilm strengthened via upconversion phosphors (UCPs)
摘要: The application of periphytic biofilm in removing nitrogen from water is limited by the fluctuating nitrogen concentration. Here, we delineate a novel approach to enhance periphytic biofilm performance in nitrogen removal via upconversion luminescence of upconversion phosphors (UCPs). Nitrogen removal rates (14 d) in high nitrogen wastewater (26 mg/L) were significantly improved to 58.6% and 61.4% by UCPs doped with Pr3+ and Li+ and UCPs doped with Pr3+, respectively, and to 95.1% and 95.9% in low nitrogen surface water (2 mg/L), respectively. The stimulation of UCPs optimized the microbial community structure in the periphytic biofilms, and also resulted in good acclimation to use different carbon sources. The enhanced synergic action of cyanobacterial biomass, ratio of Gram +ve to Gram -ve bacteria and carbon source metabolic capacity contributed to the improved nitrogen removal. This novel approach is promising in nitrogen removal from wastewater and surface water with fluctuating initial nitrogen concentration.
关键词: Nitrogen removal,Microbial aggregates,Upconversion luminescence,Microbial community structure,Periphytic biofilm
更新于2025-09-10 09:29:36