修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

8 条数据
?? 中文(中国)
  • High-performance potassium-sodium niobate lead-free piezoelectric ceramics based on polymorphic phase boundary and crystallographic texture

    摘要: Lead-free piezoelectric ceramics are urgently needed in the field of electromechanical conversion devices due to the restriction on the use of lead-based ceramics. In this study, the polymorphic phase boundary (PPB) were tuned by incorporating different concentration of (Bi0.5K0.5)HfO3 into the matrix (K0.5Na0.5)(Nb0.965Sb0.035)O3-CaZrO3, and the <00l>c crystallographic texture was realized by templated grain growth method. The maximal d33 (~550 pC/N) and kp (~72%) were achieved in the <00l>c textured ceramics with composition around rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary. It is proposed that the enhanced piezoelectricity should be ascribed to several combined effects, which primarily contain the R-O-T phase boundary facilitating polarization rotation, the crystallographic orientation induced intrinsic piezoelectric anisotropy, electric-field-induced lattice distortion and phase transitions, and NaNbO3 seed-crystal-driven nanodomain structures. This work provides an effective solution to enhance piezoelectric properties by simultaneous tailoring polymorphic phase boundary and using crystallographic texture in potassium-sodium niobate based piezoelectric ceramics. We believe that the simple solution and design principle can also be applied to other piezoelectric ceramic systems, no matter lead-based or lead-free.

    关键词: polymorphic phase boundary,piezoelectricity,potassium-sodium niobate,crystallographic texture

    更新于2025-11-14 17:28:48

  • In Situ Measurement of Phase Boundary Kinetics during Initial Lithiation of Crystalline Silicon through Picosecond Ultrasonics

    摘要: Studying the kinetics of phase transformation and phase boundary propagation during initial lithiation of silicon electrodes in lithium ion batteries is relevant to understanding their performance. Such studies are usually challenging due to the difficulties in measuring the phase boundary velocity in the interior of the sample. Here we introduce a non-invasive, in situ method to measure the progression of the phase boundary in a planar specimen geometry while maintaining well-controlled lithium flux and potential. We developed an apparatus integrating an electrochemical cell with picosecond ultrasonics to probe the propagating phase boundary in real time. Phase propagation during initial lithiation of crystalline silicon, which is an example of a high capacity anode, is investigated. The primary objective of this manuscript is to report on the experimental technique development and some preliminary results. For lithiation normal to the (100) plane, we observe the phase boundary velocity to be approximately 12 pm/s and x to be 3.73 in LixSi under galvanostatic lithiation with a current density of 40 μA/cm2. The growth rate of the lithiated phase and the reaction rate coefficient are examined using a Deal-Grove type model.

    关键词: Lithium ion battery,In situ,Phase boundary propagation,Crystalline silicon,Picosecond ultrasonics

    更新于2025-09-23 15:23:52

  • Pseudocubic-based polymorphic phase boundary structures and their effect on the piezoelectric properties of (Li,Na,K)(Nb,Sb)O3-SrZrO3 lead-free ceramics

    摘要: CuO-added 0.96(LixNa0.5-xK0.5)(Nb1-ySby)O3-0.04SrZrO3 ceramics were sintered at 1020oC for 6 h. Various crystal structures were synthesized in these specimens by controlling the Li2CO3 (x) and Sb2O5 (y) contents: pseudocubic, orthorhombic-pseudocubic polymorphic phase boundary (PPB), tetragonal-pseudocubic PPB, orthorhombic-tetragonal-pseudocubic PPB, and orthorhombic-tetragonal PPB structures. The pseudocubic structure developed in these specimens was similar to the R3m rhombohedral structure instead of the Pm3m cubic structure because the specimens with a pure pseudocubic structure showed good ferroelectric and piezoelectric properties. The piezoelectric properties of the specimens were influenced by their crystal structures. The specimen with the tetragonal-pseudocubic PPB structure showed the best piezoelectric properties because this structure was similar to the tetragonal-rhombohedral morphotropic phase boundary structure developed in Pb(Zr1-xTix)O3-based ceramics. In particular, the specimen with the tetragonal-pseudocubic PPB structure corresponding to x = 0.05 and y = 0.065 showed the largest d33 and kp values of 431 pC/N and 0.43, respectively.

    关键词: K)(Nb,Piezoelectric properties,Polymorphic phase boundary structure,Sb)O3-SrZrO3-based lead free piezoelectric ceramics,Pseudocubic structure,Na,(Li

    更新于2025-09-23 15:23:52

  • Electrical response of mixed phase (1-x)BiFeO3-xPbTiO3 solid solution: Role of tetragonal phase and tetragonality

    摘要: We present the study of structural, morphological, dielectric, transport and ferroelectric properties of (1-x)BFO–xPTO solid solutions, with 0.3 ≤ x ≤ 0.6, prepared via non-conventional synthesis methods. These methods include Sol-gel and Single-step solid state method. Structural analysis revealed presence of mixed phases i.e. monoclinic (CC) and tetragonal (P4mm) phases, for all compositions showing a Morphotropic Phase Boundary. For the compositions with higher concentration of PTO, an increase in tetragonal phase fraction has been observed. Quantitative analysis showed, in general, higher value of c/a (i.e. tetragonality) for all samples as compared to the bulk PTO. The morphological analysis shows small grain size irrespective of synthesis method and composition. The low temperature frequency dependent tangent loss shows dielectric relaxation with small magnitude of dielectric constant indicating absence of extrinsic contributions. High temperature dielectric anomaly is observed around 400-500 K corresponding to magnetic phase transformation of BFO at Neel temperature which suggest the presence of magneto-electric coupling in specific compositions. Sol-gel prepared composite appeared to be more resistive than the Single-step synthesized composite and shows Arrhenius type dependence of high temperature ac conductivity. Ferroelectricity was observed in all ceramic samples which sustained high applied electric field up to 190 kV/cm. Finally, a correlation between polarization, tetragonal phase fraction and c/a ratio, has been drawn and discussed. It is concluded that c/a ratio (i.e. tetragonality) is more important parameter which can be tuned to achieve enhanced ferroelectric response as compared to the tetragonal phase fraction in (1-x)BFO–xPTO solid solutions.

    关键词: Electric polarization,Non-conventional synthesis methods,Tetragonality,Morphotropic phase boundary,Ferroelectricity,Phase evolution,Dielectric anomalies

    更新于2025-09-19 17:15:36

  • Enhanced dielectric and piezoelectric properties in the [001]-poled 0.25Pb(In <sub/>1/2</sub> Nb <sub/>1/2</sub> )O <sub/>3</sub> -0.43Pb(Mg <sub/>1/3</sub> Nb <sub/>2/3</sub> )O <sub/>3</sub> -0.32PbTiO <sub/>3</sub> single crystal near morphotropic phase boundary by alternating current treatment

    摘要: In this paper, temperature dependance of induced dielectric and piezoelectric properties in the [001]-oriented predirect current poling (DCP) of the 0.25Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (0.25PIN-0.43PMN-0.32PT) single crystals near morphotropic phase boundary was investigated using the alternating current treatment (ACT). By the optimized ACT conditions of 1 kV/mm at 50 Hz over 20 cycles, the dielectric permittivity (ε0) and piezoelectric coefficient (d33) at room temperature of the DCP-ACT crystal were improved to be 7120 and 2610 pC/N, which were 48% and 54% higher than that of the DCP crystal (ε0 = 4800, d33 = 1700 pC/N). Based on the temperature dependence of dielectric permittivity and dielectric loss of the DCP-ACT crystal, the induced monoclinic phases (MA and MC) were involved in the phase transition process from a rhombohedral phase to a tetragonal phase. The phase transition temperatures TR-MA of 116 °C of the DCP-ACT crystal showed about 10 °C higher than that of DCP. Meanwhile, ε0 of the DCP-ACT crystal at TR-MA and in the tetragonal phase region, at around 110 °C and 130 °C, were 160% and 390% higher than those of the DCP crystal, respectively. The ultrahigh ε0 = 17 000 of the DCP-ACT crystal at 130 °C may relate to the nanoscale heterogeneous polar-regions induced by ACT. The ACT is a promising way to enhance the dielectric and piezoelectric performance of the pre-DCP 0.25PIN-0.43PMN-0.32PT single crystals with broadened temperature range for device applications.

    关键词: single crystal,piezoelectric properties,morphotropic phase boundary,alternating current treatment,dielectric properties

    更新于2025-09-19 17:13:59

  • Improved ferroelectric response of pulsed laser deposited BiFeO <sub/>3</sub> -PbTiO <sub/>3</sub> thin films around morphotropic phase boundary with interfacial PbTiO <sub/>3</sub> buffer layer

    摘要: (1 ? x)BiFeO3-xPbTiO3 (BF-xPT) is an interesting material for sensing and actuating devices with large polarization near the morphotropic phase boundary (MPB) (x = 0.30) in the bulk form. However, pulsed laser deposition (PLD) grown (BF-xPT) thin films usually show high electrical leakage and, hence, saturated ferroelectric hysteresis loops are only obtained at subzero temperatures. In this article, we report on high room temperature ferroelectric polarization with saturated hysteresis loops in pulsed laser deposited (BF-xPT) polycrystalline thin films of compositions near the MPB with the use of a thin buffer layer of PbTiO3 (PT). The thin films possessed a perovskite structure with excellent crystallinity and exhibit the presence of a monoclinic (Cm) phase (MA-type) for x = 0.20–0.25 and a mixture of a monoclinic (Cm) phase and a tetragonal (P4mm) phase for x = 0.30–0.35 compositions. The thin films with composition x = 0.25 exhibit a monoclinic phase and yield very large room temperature ferroelectric polarization (2Pr > 80μC/cm2), perhaps the highest room temperature ferroelectric polarization and excellent piezoelectric properties in PLD deposited (BF-xPT) thin films of near-MPB composition. Furthermore, the evolution of ferroelectricity with PT content, studied using room temperature Raman spectroscopy, reveals a correlation with lattice dynamics and stereochemical activity of Bi. Piezoforce domain analysis of the thin films reveals that ferroelectric polarization and electrical leakage in the thin films are intricately related to the type of domains present in the samples, viz., 180°, 109°, 90°, and 71° due to differences in the nature of the domain walls.

    关键词: thin films,pulsed laser deposition,PbTiO3 buffer layer,ferroelectric response,BiFeO3-PbTiO3,morphotropic phase boundary

    更新于2025-09-19 17:13:59

  • Temperature-driven phase transitions and enhanced piezoelectric responses in Ba(Ti0.92Sn0.08)O3 lead-free ceramic

    摘要: Ferroelectric phases coexistence or transition is an important strategy on generating high piezoelectricity. Here, the temperature-induced phase structural evolution correlated with small signal piezoelectric response d33, bias-field piezoelectric activity dmax33 (E), unipolar and bipolar strain piezoelectric outputs d*33 in Ba(Ti0.92Sn0.08)O3 (BTS0.08) ceramic was investigated in details. Temperature-driven successive phase transitions from rhombohedral(R) to orthorhombic(O), tetragonal(T), finally to cubic(C) phases took place around 14 °C, 38 °C and 61 °C, respectively. The highest d33 value of 675 pC/N is achieved in the T-C phase transition. However, the O-T phase boundary gives the highest dmax33 = 1170 pm/V, bipolar d*33 = 822 pm/V and unipolar d*33 = 1318 pm/V. The temperature-driven phase transition exhibits large enhancements in piezoelectric property comparable to that of composition-induced phase boundary. These features suggest an effective method to design high-performance piezoelectrics by tailoring the types of phase boundary.

    关键词: Phase transition,Lead-free piezoceramics,Ferroelectrics,Phase boundary

    更新于2025-09-10 09:29:36

  • Structural transformations and physical properties of (1-x) Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3-x</sub> BaTiO<sub>3</sub> solid solutions near morphotropic phase boundary

    摘要: Piezoelectric and other physical properties are significantly enhanced at (or near) a morphotropic phase boundary (MPB) in ferroelectrics. MPB materials have attracted significant attention owing to both fundamental physics as well as the possibility of well-regulated energy and information storage devices which are dominated by lead (Pb)-based materials. Here, we report the crystal structure, Raman spectra, dielectric constant and polarization near the MPB of lead free (1-x) Na0.5Bi0.5TiO3 - x BaTiO3 (NBT - BT) (0.00 ≤ x ≤ 0.10) solid-solution, prepared by sol-gel auto combustion technique and sintered by microwave sintering technique. With the addition of BaTiO3 into Na0.5Bi0.5TiO3, it induces a structural phase transition from R3c (a single phase) to R3c+P4mm (a dual phase) close to x = 0.06 and 0.07 and transform to a high symmetry tetragonal phase P4mm at higher compositions (x = 0.08 to 0.10) as evident from our X-ray Rietveld refinement and Raman spectroscopic results. In the prepared solid solution, an anomalous enhancement of remnant polarization (2Pr0) was observed for x = 0.06 and 0.07, which has been explained based on the existence of the MPB. On the other hand, the value of coercive field EC0 was found to be decreased linearly from x = 0.00 to 0.06; it is constant for higher compositions. Further details of the ferroelectric properties on the electric field poled samples have been studied and compared with the as-grown (unpoled) samples. We perform first-principles calculations based on density functional theory that confirm a structural transition from a rhombohedral to a tetragonal phase under increasing x.

    关键词: First-principles calculations,Crystal structure,Morphotropic Phase Boundary,Microwave sintering,Lead-free ferroelectric materials,Electrical properties,NBT-BT solid solution

    更新于2025-09-09 09:28:46