修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell

    摘要: Photo-bioelectrochemical fuel cell (PBFC) represents a promising technology for enhancing removal of antibiotic pollutants while simultaneously sustainable transformation of organic wastes and solar energy into electricity. In this study, simultaneous antibiotic removal and bioelectricity generation were investigated in a PBFC with daily light/dark cycle using oxytetracycline (OTC) as a model compound of antibiotic. The specific OTC removal rate increased by 61% at an external resistance of 50 U compared to that in the open-circuit control, which was attributed to bioelectrochemically enhanced co-metabolic degradation in the presence of the bioanode. The OTC removal was obviously accelerated during illumination of cathode in contrast with a dark cathode due to the higher driving force for anodic bioelectrochemical reaction by using photosynthetic oxygen as cathodic electron acceptor during illumination than that using nitrate in dark. The bioelectrocatalytic activity of anodic biofilm was continuously enhanced even at an initial OTC concentration of up to 50 mg L?1. The degradation products of OTC can function as mediators to facilitate the electron transfer from bacteria to the anode, resulting in 1.2, 1.76 and 1.8 fold increase in maximum power output when 10, 30 and 50 mg L?1 OTC was fed to the bioanode, compared to the OTC-free bioanode, respectively. The OTC feeding selective enriched OTC-tolerant bacterial community capable of degrading complex organic compounds and producing electricity. The occurrence of ARGs during bioelectrochemical degradation of OTC was affected more greatly by the succession of the anodic bacterial community than the initial OTC concentration.

    关键词: Bioanode,Electron transfer,Oxytetracycline removal,Photo-bioelectrochemical fuel cell

    更新于2025-09-23 15:23:52

  • Enhancing the performance of photo-bioelectrochemical fuel cell using graphene oxide/cobalt/polypyrrole composite modified photo-biocathode in the presence of antibiotic

    摘要: Photo-bioelectrochemical fuel cell (PBFC) holds a great potential to harvest sustainable electrical energy from wastewater, but low power output limits its applications due to poor electrochemical performance of photo-biocathode. Additionally, antibiotics are ubiquitous in wastewater streams, but little is known regarding their effects on photo-biocathode performance of the PBFC. This study attempted to increase power output of PBFC through improvement of the photo-biocathode performance by modifying the biocathode with graphene oxide/cobalt/polypyrrole (GO/Co/PPy) composite in the presence of oxytetracycline. The GO/Co/PPy composite modified electrode fabricated by one-step electropolymerization method exhibited more excellent catalytic activity toward oxygen reduction compared to Co-alone and Co/PPy modified electrode. The PBFC with GO/Co/PPy composite modified biocathode produced a maximum power density of 19 mW/m2, which was almost 4-fold higher than that produced with the bare biocathode (4.9 mW/m2) due to improved bio-electrocatalytic performance of the bicathode by the GO/Co/PPy composite. The maximum power density of the PBFC was further increased 4.6 (105.5 mW/m2), 3.7 (88.7 mW/m2), 2.9 (74.6 mW/m2) and 1.9 (56 mW/m2) fold by exposure to 5, 10, 20, and 50 mg/L OTC, respectively. The further increases in power was due to reduced cathode's charge transfer resistance using degradation products of OTC as mediators and OTC-stimulated growth of species with extracellular electron transfer ability. However, the photosynthesis and growth of alga was negatively affected by OTC concentration higher than 10 mg/L, resulting performance deterioration of bicathode.

    关键词: Photo-bioelectrochemical fuel cell,Electrode modification,Oxytetracycline,Performance improvement,Power generation

    更新于2025-09-23 15:22:29