- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO <sub/>2</sub> to CO
摘要: A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO2 to CO? Hsin-Ya Kuo, Tia S. Lee, An T. Chu, Steven E. Tignor, Gregory D. Scholes and Andrew B. Bocarsly* Manganese(I) tricarbonyl complexes such as [Mn(bpy)(CO)3L] (L = Br, or CN) are known to be electrocatalysts for CO2 reduction to CO. However, due to their rapid photodegradation under UV and visible light, these monomeric manganese complexes have not been considered as photocatalysts for CO2 reduction without the use of a photosensitizer. In this paper, we report a cyanide-bridged di-manganese complex, {[Mn(bpy)(CO)3]2(μ-CN)}ClO4, which is both electrocatalytic and photochemically active for CO2 reduction to CO. Compared to the [Mn(bpy)(CO)3CN] electrocatalyst, our CN-bridged binuclear complex is a more efficient electrocatalyst for CO2 reduction using H2O as a proton source. In addition, we report a photochemical CO2 reduction to CO using the dimanganese complex under 395 nm irradiation.
关键词: electrocatalyst,cyanide-bridged,photochemical reduction,CO2 reduction,di-manganese,photocatalyst,carbonyl complex
更新于2025-11-19 16:56:42
-
One-Step Photochemical Synthesis of Transition Metal - Graphene Hybrid for Electrocatalysis
摘要: For widespread use of renewable energy such as water splitting, the development of electrocatalysts on a large-scale at a low-cost that remains safe and environmentally friendly is still a great challenge. Here, we report the use of α-aminoalkyl radicals in a one-step procedure that synthesizes transition metal nanoparticle - graphene composites via photoreduction. The organic photocatalyst 2-Methyl-1-[4-(methylthio)phenyl]-2-(morpholinyl) phenyl]-1-butanone (I-907) undergoes Norrish Type I photocleavage to generate strongly reducing α-aminoalkyl radicals, when exposed to UVA. For the first time we demonstrate its ability to reduce graphene oxide (GO) and successfully synthesize Co3O4 nanoparticles decorated on graphene (Co3O4NP-rGO). The α-aminoalkyl radicals simultaneously reduce GO and Co2+ salts which nucleates on the negatively charged GO sheets and grows to form nanoparticles. The resulting Co3O4NP-rGO showed decent catalytic activity and stability for the Oxygen Evolution Reaction (OER). Our work introduces a new and environmentally friendly synthesis procedure that can be used to produce earth abundant transition metal electrocatalysts.
关键词: photochemical synthesis,reduced graphene oxide,Graphene oxide,α-aminoalkyl radicals,water oxidation,metal nanoparticles
更新于2025-11-19 16:56:35
-
Photodegradation of Fluoxetine Applying Different Photolytic Reactors: Evaluation of the Process Efficiency and Mechanism
摘要: Photolytic degradation of fluoxetine (FLX), a medicine commonly known as Prozac?, was evaluated by using different photochemical processes. The ultraviolet/microwave (UV/MW) process showed higher efficiency in all the aspects evaluated in this study. The energy consumption was equivalent to 1.94 × 10-4 kW h mg-1 L (UV/MW), while in the UV process the value was 1.20 × 10-2 kW h mg-1 L. The degradation kinetics were applied to the FLX, with rate constant (k) = 0.15 ± 0.01 min-1 and linear correlation coefficient (R2) = 0.980 for UV, and k = 6.15 ± 0.08 min-1 and R2 = 0.998 for UV/MW. The FLX degradation of 99.16% (UV/MW 5 min) and 98.90% (UV 120 min) were observed, evidencing higher efficiency for the first process. The monitoring of transformation products (TPs) through chromatographic analysis enabled the identification of 9 TPs, proving that for the UV/MW process, the hydroxylated structures are verified in high quantity.
关键词: photolysis,fluoxetine,transformation products,photochemical reactor,kinetics
更新于2025-11-19 16:56:35
-
Codelivery of a cytotoxin and photosensitiser <i>via</i> a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release
摘要: Endosomal entrapment is a key issue for the intracellular delivery of many nano-sized biotherapeutics to their cytosolic or nuclear targets. Photochemical internalisation (PCI) is a novel light-based solution that can be used to trigger the endosomal escape of a range of bioactive agents into the cytosol leading to improved efficacy in pre-clinical and clinical studies. PCI typically depends upon the endolysosomal colocalisation of the bioactive agent with a suitable photosensitiser that is administered separately. In this study we demonstrate that both these components may be combined for codelivery via a novel multifunctional liposomal nanocarrier, with a corresponding increase in the biological efficacy of the encapsulated agent. As proof of concept, we show here that the cytotoxicity of the 30 kDa protein toxin, saporin, in MC28 fibrosarcoma cells is significantly enhanced when delivered via a cell penetrating peptide (CPP)-modified liposome, with the CPP additionally functionalised with a photosensitiser that is targeted to endolysosomal membranes. This innovation opens the way for the efficient delivery of a range of biotherapeutics by the PCI approach, incorporating a clinically proven liposome delivery platform and using bioorthogonal ligation chemistries to append photosensitisers and peptides of choice.
关键词: photosensitiser,codelivery,cell penetrating peptide,photochemical internalisation,saporin,liposomal nanocarrier,endosomal escape
更新于2025-11-14 15:32:45
-
Photochemical multivariate curve resolution models for the investigation of photochromic systems under continuous irradiation
摘要: We propose a multivariate curve resolution approach for the investigation of photochromic systems using UV-Visible spectroscopy. The incorporation of photochemical hard-models as constraints in multivariate curve resolution alternating least squares (MCR-ALS) allows extracting reaction quantum yields in situations where a complete knowledge of the system is not available. We apply this approach to the study of the photochromism of CMTE (cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene) under continuous monochromatic irradiation. The mechanism, involving 3 species and 2 reversible reactions, is written and translated into a kinetic constraint that can be applied to the concentration profiles within ALS. First, ambiguity of the solution obtained for photochemical model(s) is calculated and discussed for single set analysis. Multiset analysis is then proposed combining data obtained under different irradiation wavelengths to provide more reliable results. Finally, the photochemical reactivity of CMTE is widely unraveled, and some description of the mechanism observed under irradiation at 365 nm is given.
关键词: Multivariate curve resolution,Quantum yield,Hard-soft modelling,Parameter ambiguity,Photochemical reaction
更新于2025-09-23 15:23:52
-
PEGylated doxorubicin cloaked nano-graphene oxide for dual-responsive photochemical therapy
摘要: Graphene oxide (GO) own huge surface area and high drug loading capacity for aromatic molecules, such as doxorubicin (DOX). However, its biocompatibility is poor and it might agglomerate in physiological condition. Chemical modification of GO with hydrophilic polymer, especially PEGylation, was a common method to improve its biocompatibility. But the chemical modification of GO was complicated, and its drug loading capacity might be reduced because of the occupation of its functional groups. In this study, DOX-PEG polymers with different PEG molecular weight were synthesized to modify nano graphene oxide (NGO) to simultaneously realize the solubilization of NGO and the high loading capacity of DOX. The result showed that the drug release of NGO@DOX-PEG was pH sensitive. NIR irradiation could augment the drug release, cellular uptake, cytotoxicity and nuclear translocation of nanodrugs. Among the three kinds of nanodrugs, NGO@DOX-PEG5K was superior to others. It suggested that after conjugating with PEG, the bond between DOX-PEG and NGO was weakened, which resulted in a better drug release and treatment effect. In summary, the NIR and pH dual-responsive NGO@DOX-PEG nanodrugs were developed by noncovalent modification, and it demonstrated excellent biocompatibility and photochemical therapeutic effect, presenting a promising candidate for antitumor therapy, especially NGO@DOX-PEG5K.
关键词: Nano-drug Delivery System,pH sensitive,Nano-Graphene Oxide,photochemical therapy,Doxorubicin
更新于2025-09-23 15:23:52
-
Ab initio model for the chlorophyll-lutein exciton coupling in the LHCII complex
摘要: 2A_g^- state of lutein plays a crucial role in photoprotection of higher plants. Due to its multiconfigurational nature, accurate description of this electronic state and respective transition properties is a formidable task. In this paper, applicability of various CASSCF and RASSCF formulations for description of the 2A_g^- state is discussed. It is shown that inclusion of the entire π-system of lutein into the active space is required for accurate calculation of transition properties. Exciton coupling in the chlorophyll-lutein dimer involved in non-photochemical quenching in the LHCII complex was calculated to provide a connection between pigment interactions and non-photochemical quenching regulation.
关键词: non-photochemical quenching,MCSCF,Xanthophyll,lutein,exciton coupling,LHCII
更新于2025-09-23 15:23:52
-
Effect of photochemical advanced oxidation processes on the formation potential of emerging disinfection by-products in groundwater from part of the Pannonian Basin
摘要: This study evaluates the effect of photochemical advanced oxidation processes (AOPs) (O3/UV, H2O2/UV and O3/H2O2/UV) on the formation potential (FP) of emerging disinfection by-products including nitrogenous by-products (N-DBPs) and haloketones (HKs) in groundwater from part of the Pannonian Basin (AP Vojvodina, Republic of Serbia). Among the N-DBPs, the haloacetonitrile (HAN) precursor contents were 9.83 ± 0.59 μg/L while precursors of halonitromethanes, particularly trichloronitromethane (TCNM) were not detected. Similarly, precursors of HKs as carbonaceous DBPs were also not detected in raw water. Ozonation alone and H2O2/UV process with a lower UV dose maximally decomposed HAN precursors (about 70%) while during O3 based AOPs, HANFP varied significantly. Application of UV photolysis and H2O2/UV processes with increasing UV dose doubled the HANFP. Ozone alone, O3/UV and H2O2/UV slightly increased HKs formation potential, particularly 1,1-Dichloro-2-propanone FP (0.93 ± 0.21 to 2.01 ± 0.37 μg/L). None of the investigated treatments influenced the formation of TCNM precursors. The effect of the applied treatments on bromide incorporation was the most evident for HANs.
关键词: emerging disinfection by-products,ozone,bromide incorporation,photochemical advanced oxidation processes
更新于2025-09-23 15:23:52
-
DNA Engineered Noble Metal Nanoparticles (Fundamentals and State-of-the-art-of Nanobiotechnology) || Photochemical and Photophysical Events
摘要: DNA Engineered Noble Metal Nanoparticles: Fundamentals and State-of-the-art of Nanobiotechnology. This chapter covers photochemical and photophysical events involving noble metal nanoparticles, DNA nucleobases, DNA/PNA interactions, DNA-dye conjugates, DNA-AuNP-dye conjugates, DNA-gold nanoparticle conjugates, DNA-AgNPs, and hot gold nanoparticles, discussing their applications in bioanalysis, spectroscopy, photothermal therapy, imaging, and sensing.
关键词: biosensing,nanobiotechnology,localized surface plasmon resonance,noble metal nanoparticles,photophysical events,DNA,photochemical events,photothermal therapy,fluorescence
更新于2025-09-23 15:23:52
-
Dynamics of dissolved organic matter in a wastewater effluent-impacted Japanese urban stream: characteristics, occurrence and photoreactivity of fluorescent components
摘要: We report the results of using the excitation–emission matrix (EEM) method combined with parallel factor analysis (PARAFAC) to investigate the characteristics and occurrence of dissolved organic matter (DOM) in an urban stream impacted by effluent from a wastewater treatment plant (WWTP). The PARAFAC model divides the bulk EEM spectra into six individual fluorescent components with three humic-like components (C1–C3), two protein-like components (C4 and C5) and a wastewater-derived component (C6). In general, intensities of fluorescent components are abundant in WWTP effluent impacted samples, thus showing that such an effluent is a major source of DOM in urban rivers, but C5 is considered to have autochthonous sources within the stream. In areas where the effluent is released, the fluorescent intensity from components (except C5) gradually decreases as these components are transported downstream. However, concentrations of dissolved organic carbon remain almost constant downstream of the release area. These results would be attributed to degradation and/or modification of fluorophore. Photolysis experiments confirmed that fluorescent intensities can decrease with increase of irradiation times. C6 particularly showed a rapid photodegradation, remaining only 24.1% after 48 h photolysis. These findings would be important when assessing DOM source and water quality in aquatic environments by EEM-PARAFAC.
关键词: dissolved organic matter,excitation–emission matrix,urban river,photochemical reaction
更新于2025-09-23 15:22:29