- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Photodynamic therapy versus endoscopic submucosal dissection for management of patients with early esophageal neoplasia: a retrospective study
摘要: Background: Photodynamic therapy (PDT) and endoscopic submucosal dissection (ESD) have been proposed as a treatment for early esophageal neoplasia. The objective of this study is to compare between the clinical outcome after ESD and PDT to reach the best management for early esophageal neoplasia. Methods: All patients undergoing ESD or PDT for early esophageal neoplasia between 2014 and 2015 were eligible for the study. A retrospective analysis for comparison between the results of ESD and PDT was done. Results: 36 patients underwent ESD and Thirty PDT. No significant difference was found between the two groups regarding the demographic or pathologic data. Also, there was no significant difference regarding the length of hospital stay, presence of hydrothorax, fever, and pain. Operative time was significantly longer in ESD than in PDT (72 vs. 8 minutes, P<0.001). In addition, bleeding was significantly lower in ESD than PDT (12 vs. 2, P<0.05). There was a significant difference regarding stricture and cost which were less in ESD (6 vs. 15, P<0.05). However, perforation was much more in ESD (6 vs. 0, P<0.05). There was no significant difference between the two groups regarding the disease free survival (DFS), but it was observed that patients who underwent PDT had more favorable 2-year DFS rates than patients received ESD. Conclusions: The PDT may be comparable to the ESD. With the exception of esophageal stenosis, PDT could reduce many complications and have longer DFS in comparison with ESD. PDT is feasible for patients with early esophageal neoplasia confined to the mucosal layer without regional lymph nodal or distant metastasis.
关键词: Photodynamic therapy (PDT),early esophageal neoplasia,endoscopic submucosal dissection (ESD)
更新于2025-09-23 15:23:52
-
Regression Analysis of Protoporphyrin IX Measurements Obtained During Dermatological Photodynamic Therapy
摘要: Photodynamic therapy (PDT) is a light activated drug therapy that can be used to treat a number of dermatological cancers and precancers. Improvement of efficacy is required to widen its application. Clinical protoporphyrin IX (PpIX) fluorescence data were obtained using a pre-validated, non-invasive imaging system during routine methyl aminolevulinate (MAL)-PDT treatment of 172 patients with licensed dermatological indications (37.2% actinic keratosis, 27.3% superficial basal cell carcinoma and 35.5% Bowen’s disease). Linear and logistic regressions were employed to model any relationships between variables that may have affected PpIX accumulation and/or PpIX photobleaching during irradiation and thus clinical outcome at three months. Patient age was found to be associated with lower PpIX accumulation/photobleaching, however only a reduction in PpIX photobleaching appeared to consistently adversely affect treatment efficacy. Clinical clearance was reduced in lesions located on the limbs, hands and feet with lower PpIX accumulation and subsequent photobleaching adversely affecting the outcome achieved. If air cooling pain relief was employed during light irradiation, PpIX photobleaching was lower and this resulted in an approximate three-fold reduction in the likelihood of achieving clinical clearance. PpIX photobleaching during the first treatment was concluded to be an excellent predictor of clinical outcome across all lesion types.
关键词: photobleaching,aminolevulinic acid (ALA; Ameluz),dermatology,protoporphyrin IX (PpIX),imaging,methyl aminolevulinate (MAL; Metvix),photodynamic therapy (PDT),fluorescence,non-melanoma skin cancer (NMSC)
更新于2025-09-23 15:22:29
-
Photomedicine - Advances in Clinical Practice || Light-Emitting Woven Fabric for Treatment with Photodynamic Therapy and Monitoring of Actinic Keratosis
摘要: A successful photodynamic therapy (PDT) requires a specific photosensitizer, oxygen and light of a specific wavelength and power. Today photodynamic therapy (PDT) is administered to patients with light-emitting diode (LED) panels. These panels deliver a non-uniform light distribution on the human body parts, as the complex human anatomy is not a flat surface (head vertex, hand, shoulder, etc.). For an efficient photodynamic therapy (PDT), a light-emitting fabric (LEF) was woven from plastic optical fibers (POF) aiming at the treatment of dermatologic diseases such as actinic keratosis (AK). Plastic optical fibers (POF) (Toray, PGR-FB250) have been woven in textile in order to create macro-bendings, and thus emit out the injected light directly to the skin. The light intensity and light-emitting homogeneity of the LEF were improved thanks to Doehlert Experimental Design. During the treatment with PDT, the photosensitizers were activated in the cancerous cells. These cells may be visualized, as they show a characteristic fluorescence under UV light, which is called fluorescence diagnosis (FD). Therefore, it is proposed to modify the developed LEF for PDT to measure the fluorescence amount. For this aim, a part of POFs was cut out to observe the quantity of light that could be collected while the LEF was connected to a light source. The first prototypes showed the possibility of the illumination with the same LEF without losing the efficiency but also imaging the collected light.
关键词: fluorescence diagnosis (FD),weaving,light emitting fabric (LEF),plastic optical fiber (POF),photodynamic therapy (PDT)
更新于2025-09-23 15:22:29
-
Development of a new multi-mode NIR laser system for photodynamic therapy
摘要: Photodynamic Therapy (PDT) has been used in various fields especially in cancer treatment. In PDT, designing a light source has vital importance in order to achieve a successful treatment. Among the light sources, Lasers are important candidates for their precise wavelengths to activate the photosensitizers (PS), coherent nature and fiber-coupled usage. In order to achieve perfect PDT treatment, the Laser light sources needs to be embedded with high stability current, temperature controllers and closed loop control systems. In this study, a novel Multi-mode PDT Laser system (MPTL) was developed with four different radiation modes. Importantly, Super Pulse Mode (SPM) was implemented for the first time among the PDT Laser systems in the open literature to minimize the thermal damage to the target tissue. The proposed system achieved high optical output stability by precise current and temperature control of the Laser resonator. The MPTL achieved high optical output stability ( ± 1mW) in the range of 0–1500 mW, high wavelength stability ( ± 1nm) at 635 nm, and high temperature stability ( ± 0.2 °C) in all radiation modes. The MPTL system with super pulse mode can be safely used for wide range of PDT clinical applications.
关键词: Pulse mode laser,Photodynamic therapy,PDT light source,NIR,Super-pulse,Laser system,Multi-mode
更新于2025-09-23 15:21:01
-
Clinical trial of photodynamic therapy for peripheral-type lung cancers using a new laser device in a pilot study
摘要: Introduction/Aim: Photodynamic therapy (PDT) involves the use of a tumor-specific photosensitizer and laser irradiation, and one of the treatment options recommended for early centrally located lung cancers, but not yet for peripheral-type lung cancers. We developed a new laser probe, the composite-type optical fiberscope (COF), which allows accurate laser irradiation of a cancer lesion with simultaneous visualization of the lesion. Methods: This phase I study was conducted in 7 patients with peripheral lung cancers (primary tumor ≤20 mm in diameter). We performed endobronchial PDT for these patients using the new laser probe and talaporfin sodium as the photosensitizer. Results: We performed PDT for 3 patients with peripheral lung cancer using a laser dose of 50 J/cm2 at 120 mW, and confirmed the feasibility of using this dose. Then, we escalated the laser dose to 100 J/cm2 in 4 additional patients. A total of 7 patients met our inclusion criteria. Evaluation at 2 weeks and 3 months after the PDT revealed no complication such as pneumonia or pneumothorax. At the evaluation conducted 6 months later, we found CR in 3 cases and SD in the remaining 4 cases. Conclusion: PDT was found to be a feasible and non-invasive treatment modality for early peripheral-type lung cancer. In the future, PDT could become a standard treatment option for peripheral-type lung cancer.
关键词: Photodynamic Therapy (PDT),laser,peripheral type lung cancer,clinical trial,photosensitizer,endobronchial treatment
更新于2025-09-23 15:21:01
-
Photodynamic therapeutic ablation for peripheral pulmonary malignancy via electromagnetic navigation bronchoscopy localization in a hybrid operating room (OR): a pioneering study
摘要: Background: With the aid of electromagnetic navigation bronchoscopy (ENB), it has become possible to approach peripheral lung tumors from the airway. Meanwhile, local ablation using photodynamic therapy (PDT) has shown increasing promise in the realm of lung cancer treatment. The purpose of this study was to explore an alternative ablation method using PDT with SuperDimension ENB localization in a hybrid operating theater. Methods: Our study includes patients with primary or metastatic lung cancer who underwent PDT via ENB in the hybrid operating room (OR) of National Taiwan University Hospital between January 2016 and January 2017. ENB with the SuperDimension Navigation System (7th edition) was performed before PDT ablation to localize the target lesions. PDT ablation was performed with the assistance of intraoperative Dyna-computed tomography (Dyna-CT). Tumor response was evaluated by CT 3 months after the procedure. Results: Three patients underwent lung interstitial PDT via the aid of ENB during the study period. The mean size of the nodules was 21.3 mm. The mean navigation time was 14.3 minutes. In all cases, the target pulmonary nodule was ablated by PDT successfully. No major procedure-related complications occurred. One patient suffered from skin hypersensitivity one month after the procedure. The follow-up CT showed significant tumor shrinkage for all the patients. They were all discharged without incident a few days after the procedure as scheduled. Conclusions: PDT with SuperDimension ENB guidance in the hybrid OR is a novel and feasible approach to control peripheral lung malignancy.
关键词: electromagnetic navigation bronchoscopy (ENB),SuperDimension,Peripheral-type lung malignancy,photodynamic therapy (PDT)
更新于2025-09-19 17:15:36
-
Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers
摘要: Photodynamic therapy (PDT) has been used in the treatment of cancers and other benign diseases for several years in clinic. However, the hypoxia of tumors and the penetration limitation of excitation light to tissues can dramatically reduce the efficacy of PDT to cancers. To overcome these drawbacks, various assembled nanocarriers such as nanoparticles, nanocapsules, nanocrystals, and so on were introduced. The assembled nanocarriers have the ability of loading photosensitizers, delivering O2 into tumors, generating O2 in situ in tumors, as well as turning near-infrared (NIR) light, X-rays, and chemical energy into ultraviolet or visible light. Therefore, it is easy for the nanocarriers to improve the hypoxia microenvironment or increase the treatment depth of cancers, which will improve the efficiency of PDT to some degree. In recent years, a number of investigations were focused on these subjects. We will summarize the advances of nanocarriers in PDT, especially in O2 introduction PDT and deep PDT. The perspectives, challenges, and potential in translation of PDT will also be discussed.
关键词: Oxygen introduction,Photodynamic therapy (PDT),Cancers,Nanocarriers,Deep PDT
更新于2025-09-19 17:13:59
-
A Combination of Visudyne and a Lipid-Anchored Liposomal Formulation of Benzoporphyrin Derivative Enhances Photodynamic Therapy Efficacy in a 3D Model for Ovarian Cancer
摘要: A major objective in developing new treatment approaches for lethal tumors is to reduce toxicity to normal tissues while maintaining therapeutic efficacy. Photodynamic therapy (PDT) provides a mechanistically-distinct approach to treat tumors without the systemic toxicity of chemotherapy drugs. PDT involves the light-based activation of a small molecule, a photosensitizer (PS), to generate reactive molecular species (RMS) that are toxic to target tissue. Depending on the PS localization, various cellular and subcellular components can be targeted, causing selective photodamage. It has been shown that targeted lysosomal photodamage followed by, or simultaneous with, mitochondrial photodamage using two different PS results in a considerable enhancement in PDT efficacy. Here, two liposomal formulations of benzoporphyrin derivative (BPD): 1. Visudyne (clinically-approved) and 2. an in-house formulation entrapping a lipid-conjugate of BPD, are used in combination to direct PS localization to mitochondria, endoplasmic reticulum and lysosomes, enabling simultaneous photodamage to all three organelles using a single wavelength of light. Building on findings by our group, and others, this study demonstrates, for the first time in a 3D model for ovarian cancer, that BPD-mediated photodestruction of lysosomes and mitochondria/ ER significantly enhances PDT efficacy at lower light doses than treatment with either PS formulation alone.
关键词: mitochondrial photodamage,benzoporphyrin derivative,Photodynamic therapy (PDT),liposome,dual photosensitizer,lipid-anchored,lysosomal photodamage,Visudyne,3D tumor model,ovarian cancer
更新于2025-09-11 14:15:04
-
Perspective Clinical Study on Effect of 5-Aminolevulinic Acid Photodynamic Therapy (ALA-PDT) in Treating Condylomata Acuminata in Pregnancy
摘要: Objective: To observe the clinical efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in treating vulval condylomata acuminata (CA) in pregnancy. Methods: The clinical efficacies of ALA-PDT on 16 cases of CA in pregnancy as well as cryotherapy on 22 cases of CA in pregnancy were analyzed in this prospective study. Results: The treatment group showed a wart clearance rate of 93.8% after 3 PDT treatments, while the control group showed a wart clearance rate of 72.7% after 3 cryotherapy treatments. After the 3-month follow-up period, the treatment group registered a recurrence rate of 6.3%, whereas the control group recorded a recurrence rate of 36.4%, indicating a statistically significant difference (χ2=4.674, p=0.031<0.05). After the 1-month postpartum follow-up period, the newborns grew and developed well, without any abnormality in physical examinations. Conclusion: ALA-PDT is safe and effective in treating CA in pregnancy.
关键词: cryotherapy,photodynamic therapy (PDT),pregnancy,condylomata acuminata (CA)
更新于2025-09-09 09:28:46
-
A novel pro-apoptotic role of zinc octacarboxyphthalocyanine in melanoma me45 cancer cell's photodynamic therapy (PDT)
摘要: Zn-based phthalocyanine acts as drug or photosensitizer in photodynamic therapy (PDT) for the treatment of cancer cells. The activated zinc octacarboxyphthalocyanine (ZnPcOC) reacts with oxygen, to generate reactive oxygen species for the damage of melanoma cancer cells, Me45. This in vitro study aimed at investigating the cytotoxic effects of different concentrations of ZnPcOC activated with a diode laser (λ=685 nm) on Me45, and normal human fibroblast cells, NHDF. To perform this study 104 cells/ml were seeded in 96-well plates and allowed to attach overnight, after which cells were treated with different concentrations of ZnPcOC (10, 20 and 30 μM). After 4 h, cells were irradiated with a constant light dose of 2.5; 4.5 and 7.5 J/cm2. Post-irradiated cells were incubated for 24 h before cell viability was measured using the MTT viability assay. Data indicated that high concentrations of ZnPcOC (30 μM) in its inactive state are not cytotoxic to the melanoma cancer cells and normal fibroblasts. Moreover, the results showed that photoactivated ZnPcOC (30 μM) was able to reduce the cell viability of melanoma and fibroblast to about 50%, respectively. At this photosensitizing concentration the efficacy the treatment light dose of 2.5; 4.5 and 7.5 J/cm2 was evaluated against Me45 cells. ZnPcOC at a concentration of 30 μM activated with a light dose of 2.5; 4.5 and 7.5 J/cm2 was the most efficient for the killing of melanoma cancer cells. Melanoma cancer cells after PDT with a photosensitizing concentration of 30 μM ZnPcOC and a treatment light dose of 2.5; 4.5 and 7.5 J/cm2 showed certain pro-apoptotic characteristics, such as direct inducer (early apoptosis) and long-term inducer, also (late apoptosis). This concludes that low concentrations of ZnPcOC, activated with the appropriate light dose, can be used to induce cell death in melanoma cells via ROS-induces apoptosis pathway, what was confirmed with cytometric ROS measurements. Our in vitro study showed that ZnPcOC mediated photodynamic therapy is an effective treatment option for melanoma Me45 cancer cells. 30 μM of ZnPcOC with the treatment light dose of 2.5 J/cm2 from a LED diode laser source, with a wavelength of 685 nm, was adequate to destroy melanoma cancer cells via ROS-induced apoptosis pathway, with low killing effects on healthy NHDF normal fibroblasts.
关键词: photosensitizers,zinc octacarboxyphthalocyanine (ZnPcOC),UV-Vis spectra,pro-apoptotic activity,photodynamic therapy (PDT),reactive oxygen species (ROS),melanoma Me45 cancer cells
更新于2025-09-09 09:28:46