- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- Photovoltaics
- Finite-difference
- Nanotechnology
- Absorption enhancement
- Plasmonics
- Time domain simulation
- Localized surface plasmon resonance
- Optoelectronic Information Materials and Devices
- Islamic Azad University
- Aerospace Research Institute
- Tehran University
-
Deep-ultraviolet plasmon resonances in Al-Al <sub/>2</sub> O <sub/>3</sub> @C core-shell nanoparticles prepared via laser ablation in liquid
摘要: We developed a convenient, facile, low cost and ‘‘green” method to synthesize nanoparticles(NPs) with deep-ultraviolet localized surface plasmon resonances (LSPR) based on laser ablation of aluminum target in liquid. The nanoparticles had an Al-Al2O3@C core-shell structure, and the LSPR peak ranged from 240nm to 250nm with the increasing of laser radiation time. It is found that the LSPR peak of the NPs is related to the presence of Al2O3 based on experimental characterization and theoretical simulation. The carbon shell can reduce the oxidation of Al nanoparticles and enhance the stability, which is significant important to achieve the deep-ultraviolet LSPR. Moreover, we demonstrated the enhancement of the blue fluorescence intensity from CsPbBr3-xClx by the Al-Al2O3@C NPs, due to the stronger excitations for CsPbBr3-xClx by the enhancement of localized electromagnetic field from LSPR.
关键词: PL enhancement,plasmonics,localized surface plasmon resonance,Al nanoparticle,deep-ultraviolet
更新于2025-11-14 15:32:45
-
Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform
摘要: This paper reports a highly sensitive and selective surface-enhanced Raman spectroscopy (SERS) sensing platform. We used a simple fabrication method to generate plasmonic hotspots through a direct maskless plasma etching of a polymer surface and the surface tension-driven assembly of high aspect ratio Ag/polymer nanopillars. These collapsed plasmonic nanopillars produced an enhanced near-field interaction via coupled localized surface plasmon resonance. The high density of the small nanogaps yielded a high plasmonic detection performance, with an average SERS enhancement factor of 1.5 × 107. More importantly, we demonstrated that the encapsulation of plasmonic nanostructures within nanofiltration membranes allowed the selective filtration of small molecules based on the degree of membrane swelling in organic solvents and molecular size. Nanofiltration membrane-encapsulated SERS substrates do not require pretreatments. Therefore, they provide a simple and fast detection of toxic molecules using portable Raman spectroscopy.
关键词: hotspots,sensors,molecular filtration,surface-enhanced Raman spectroscopy,localized surface plasmon resonance
更新于2025-11-14 15:30:11
-
Promoting Photoreduction Properties via Synergetic Utilization between Plasmonic Effect and Highly Active Facet of BiOCl
摘要: Exploring highly efficient photocatalysts is an urgent task for achieving efficient solar-to-chemical conversion. Plasmonic effect is widely used in improving the photocatalytic properties via reducing the activation barrier for chemical reactions, enhancing the absorption of the photocatalysts or injecting the hot carriers into the photocatalysts from the plasmon metals. In this work, we design BiOCl-Ag-E with Ag loaded on the edge side of BiOCl. This hybrid structure takes the advantages of highly photocatalytic active (001) facet of BiOCl and the plasmonic effect. The plasmon metal is proposed to provide the (001) facets with more photogenerated charge carriers driving by the internal electric field, which is convinced by the photocurrent response and the detection of active species. Due to the accumulation of more negative charge carriers on (001) facet, BiOCl-Ag-E presents outstanding waste-water cleaning and CO2 photoreduction properties. The methodology of material design in this work paves the way for future design of efficient photocatalysts.
关键词: photocatalyst,synergy effect,surface plasmon resonance,CO2 photoreduction,selective growth
更新于2025-11-14 15:27:09
-
Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles
摘要: A highly selective, sensitive, and rapid colorimetric sensor for the determination of dopamine (DA) was developed using the color change of S-doped carbon dots functionalized gold nanoparticles (S-CDs@Au NPs). The base of the method is the formation of a complex between the amine groups of dopamine with carboxylic groups of S-CDs@Au NPs followed by their aggregation with Fe3+ ions which acts as the linkers causing a red shift from 520 to 670 nm in the localized surface plasmon peak of S-CDs@Au NPs. The ratio of absorbance intensity at 670 nm to 520 nm was monitored as the analytical signal for determination of dopamine. The parameters affecting the analytical signal including reaction time, solution pH, the concentration of Au NPs and concentration of Fe3+ were optimized. At optimized conditions, the calibration curve was linear in the concentration range of 0.81-16.80 μM of dopamine. The detection and quantification limits were 0.23 μM and 0.77 μM, respectively. The intra-day and inter-day relative standard deviation (RSDs) at 5.0 μM of DA were 3.9% and 5.6%, respectively (n = 5). The applicability of the method for determination of DA in dopamine ampoule, urine and serum human samples was investigated.
关键词: Carbon dots,Localized surface plasmon resonance,Colorimetric chemical sensor,Dopamine,Gold nanoparticles
更新于2025-11-14 15:18:02
-
Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation
摘要: Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE, and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production, where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70e100 nm for Surface Plasmon Resonance (SPR) enhancement.
关键词: LaFeO3,Finite difference time domain,Surface plasmon resonance,Ni nanoparticle,Photocathode,Photoelectrochemical water splitting
更新于2025-10-22 19:40:53
-
Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix
摘要: Surface plasmon resonance (SPR) based dopamine sensor is realized using the state-of-art technique of molecular imprinting over an optical fiber substrate. Polypyrrole (PPy) is depicted as an effective polymer for the imprinting of dopamine through a green synthesis approach. Sensitivity of the probe is enhanced by the augmenting effect of surface imprinting of dopamine in polypyrrole over multiwalled carbon nanotubes (MWCNTs). To ensure the permselectivity of the probe towards dopamine molecules, a cation exchange polymer, nafion, is utilized as a membrane over imprinted sites to reduce the interference from anionic analytes like ascorbic acid and uric acid at physiological pH. The probe is characterized for a wide range of dopamine concentration from 0 to 10-5 M in artificial cerebrospinal fluid. Various probe parameters are varied to maximize the sensitivity of the sensor. The sensor possesses 18.9 pM as the limit of detection (LOD) which is lowest of those reported in the literature. The manifestation of sensing probe over an optical fiber along with the improved LOD makes the approach highly advantageous in terms of stability, repeatability, online remote monitoring, fast response, and miniaturization for its in vivo/in vitro applications in clinical sensing of dopamine.
关键词: surface plasmon,dopamine,Optical fiber,polypyrrole,nafion,molecular imprinting,sensor,multiwalled carbon nanotube
更新于2025-10-22 19:40:53
-
Control of plasmon dephasing time using stacked nanogap gold structures for strong near-field enhancement
摘要: The construction of metallic nanostructures with strong near-field enhancement is becoming increasingly significant for the practical use of plasmonic devices, such as plasmonic sensors and light-energy conversion systems. Importantly, the near-field enhancement effect depends on the plasmon dephasing time. Here, we propose a method for controlling plasmon dephasing time by utilizing plasmonic coupling for stronger near-field enhancement. Ordered arrays of stacked nanogap gold (Au) structures composed of a metal/insulator/metal nanostructure were fabricated by electron beam lithography and dry etching processes on a niobium-doped titanium dioxide substrate. The dark plasmon mode was excited by the near-field coupling between the upper and lower Au nanostructures separated by an alumina layer with a thickness of 15 nm. A strong near-field enhancement effect was induced by the localization of the electromagnetic field between the upper and lower Au nanostructures and the longer plasmon dephasing time based on the excitation of the dark plasmon mode. It is noteworthy that the dephasing time of the dark plasmon mode measured by time-resolved photoemission electron microscopy was extended 3-fold compared with that of the plasmon mode of the Au nanoblock, which can be controlled by the structural design of the stacked nanogap Au structures.
关键词: Dark plasmon mode,Plasmon dephasing,Near-field enhancement,Photoemission electron microscopy (PEEM),Surface plasmon resonance
更新于2025-09-23 15:23:52
-
Four-Way Spoof Surface Plasmon Polaritons Splitter/Combiner
摘要: Corrugated metal with period grooves supports spoof surface plasmons polariton (SSPP) wave in microwave and terahertz ranges. In this letter, a four-way SSPP splitter/combiner with oval-ring periodic structures is presented by using a single connection junction. Up to the authors’ best knowledge, a four-way SSPP splitter/combiner is never reported in the literature. In order to verify the performance of the mentioned SSPP splitter/combiner, we have manufactured and tested the presented SSPP splitter/combiner. The simulation and measurement results demonstrate that the designed conversion between a single coplanar waveguide junction and four SSPP waveguides is high efficiency. The SSPP splitter equally separates the electromagnetic wave into four paths. Hence, the proposed four-way splitter is expected to develop the SSPP active and passive components and relative integrated circuits.
关键词: spoof surface plasmon polariton (SSPP),four-way splitter/combiner,Coplanar waveguide (CPW)
更新于2025-09-23 15:23:52
-
Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)
摘要: In this paper, surface plasmon resonance (SPR) sensor on 2D materials such as MoS2 and graphene on Au and magnetic material Ni in Kretschmann configuration is analyzed using transfer matrix method. Here we noted that by sandwiching the MoS2 layer between the Au and Ni film and adding graphene over Ni film improved the sensitivity as high as 229°/RIU. We also noted that the sensitivity of the proposed sensor changes with the addition of no. of layers of graphene and MoS2. We expect that such a high sensitivity SPR sensor could find optional application in chemical examination, medical diagnostic and biological detections.
关键词: MoS2,Biosensor,Graphene,Sensitivity,Surface plasmon resonance
更新于2025-09-23 15:23:52
-
Ultra-sensitive surface plasmon resonance biosensor based on MoS2–graphene hybrid nanostructure with silver metal layer
摘要: The optical biosensors based on the plasmonic technology are an important research item in the field of biophotonics. The graphene–molybdenum disulfide (MoS2) based hybrid structures are very effective in designing and fabricating of the sensitive optical biosensors. In this paper, we propose a nanostructure Ag/MoS2/graphene as an optical biosensor with high performance and sensitivity. The proposed configuration for this surface plasmon resonance (SPR) optical biosensor is Kretschmann. Herein, the enhancement of sensitivity for the proposed SPR optical biosensor is investigated in different states. By determining of the numbers of MoS2 layer and the thickness of the metal layer, we increased the sensitivity of the proposed biosensor. The maximum sensitivity ~ 190°/RIU is achieved. For this ultra-sensitive SPR biosensor with maximum sensitivity, the numbers of MoS2 and graphene layer is 2 and the resonance wavelength is determined 680 nm.
关键词: Surface plasmon resonance,Molybdenum disulfide,Biosensor,Sensitivity,Graphene
更新于2025-09-23 15:23:52