修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Expansion of laser-induced plume after the passage of a counter shock wave through a background gas

    摘要: Double-pulsed laser ablation with two targets and lasers in a background gas is a method to form nanoparticle complex. Effects of pulse delay between two lasers on plume expansion dynamics are discussed. The germanium and silicon targets were set parallel to each other and irradiated by two YAG lasers. The germanium target was irradiated followed by irradiation of the silicon target with delay time, td. We found that the expansion distance of delayed silicon plume is enhanced for 2 μs ≤ td ≤ 50 μs, compared to that when only the silicon target is irradiated. For td = 200 μs, the expansion distance of delayed silicon plume is similar to that when only the silicon target is irradiated. We discuss the expansion dynamics of the delayed silicon plume based on the effect of the density distribution induced by the primary germanium plume. Our results indicate that the effect of primary germanium plume remains up to about td = 50 μs, and it disappears by td = 200 μs.

    关键词: Shock wave,Pulsed laser ablation,Plume expansion,Pulsed laser deposition

    更新于2025-09-23 15:21:01

  • Effect of the spot size on ionization and degree of plasma shielding in plumes induced by irradiation of a copper target by multiple short laser pulses

    摘要: The plasma plume expansion into argon background gas at atmospheric pressure induced by irradiation of a copper target with a burst of three short laser pulses at 266 nm wavelength is studied numerically for the laser spot diameters ranging from 20 μm to 500 μm. The computational model includes a thermal model of the irradiated target and a kinetic model of plume expansion. The kinetic model is implemented in the form of the direct simulation Monte Carlo method that is redesigned to account for ionization and absorption of laser radiation in the plume. The irradiation conditions are chosen to do not induce ionization and absorption during the first pulse in the burst independently of the laser spot size. During the second pulse, the ionization is initiated in the vicinity of the irradiated target behind the shock wave that is generated during that pulse and propagates through the vapor plume created by the preceding pulse. The simulations show that the degree of ionization and plasma shielding during the second and subsequent pulses strongly increases with increasing the laser spot size. It is explained by different rates of expansion between pulses in the plumes generated at various spot sizes. At a relatively small spot size, the rapid drop of density and temperature in the plume induced by the first pulse can preclude plasma ignition during the second and further pulses. These results suggest that the use of lasers with the spot sizes that are in the order of tens of micrometers can be favorable for mitigating the effect of plasma shielding in multi-pulse laser ablation when the plumes induced by individual laser pulses strongly interact with each other.

    关键词: Plume expansion,Multi-pulse irradiation,Laser spot size,Laser ablation,Plasma shielding

    更新于2025-09-23 15:19:57

  • Morphological design of complex oxides during pulsed-laser deposition: The role of plasma-plume expansion

    摘要: Complex oxides such as tin-doped indium oxide (ITO) are widely utilized as transparent conductors in a variety of functional devices. Typically, they are fabricated by sputtering, which often requires additional annealing to achieve high transparency and conductivity. Using pulsed laser deposition (PLD), both high transparency and high conductivity have been achieved without annealing, using instead selected gas species and pressures. However, the relative roles of Stranski-Krastanov-like and vapor-liquid-solid (VLS) growth modes during morphological transitions remain controversial. Here, we report on PLD of ITO in an inert-gas environment, identifying the role of plasma-plume expansion in the selection of VLS vs vapor-solid (VS) growth. For the lowest N2 pressure, indium-tin droplet formation, followed by self-catalyzed VLS growth, is observed. With increasing N2 pressure, a transition from VLS to VS growth is apparent. It is hypothesized that oxygen scattering at the lowest N2 pressure induces a metal-rich plume, which leads to metal droplet formation, followed by VLS growth. As the N2 pressure is increased, the plasma-plume and its metal-rich core are compressed, resulting in a transition to VS growth. This tunable compression of the plasma-plume o?ers a route to the morphological design of a wide range of functional complex oxide devices with tunable optical and electronic performance.

    关键词: plasma-plume expansion,morphological design,VLS growth,pulsed laser deposition,complex oxides,VS growth

    更新于2025-09-12 10:27:22