- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fluorescence detection test by black printed circuit board based microfluidic channel for polymerase chain reaction
摘要: This paper proposes the optimal structure of a PCB-based micro PCR chip constructed on a PCB substrate using commercial adhesive tapes and plastic covers. The solder mask of the PCB substrate was coated black, and the area where the reaction chamber is attached was legend printed with white silk to minimize the noise during fluorescence detection. The performance of the PCR and fluorescence detection was compared using 6 types of reaction chambers, each made with different double-sided tapes. Three of the chambers were unsuccessful in completing the PCR. The performance of the other three chambers that successfully amplified DNA was compared using Taqman probe for Chlamydia Trachomatis DNA. The amplified product was illuminated diagonally with a blue LED to excite the product just before imaging, and the LED was turned off when the image was captured to prevent quenching of the probe. The images were taken 10 seconds prior to the last extension step for each cycle using a DSLR camera. The experiments were run as a quartet for each three chambers made with different double-sided tape. The results showed that there were significant difference between the three tapes.
关键词: microfluidic channel,polymerase chain reaction,fluorescence detection test,acrylic adhesive,micro-PCR chip,black PCB,double-sided tape
更新于2025-09-23 15:22:29
-
[IEEE 2019 Compound Semiconductor Week (CSW) - Nara, Japan (2019.5.19-2019.5.23)] 2019 Compound Semiconductor Week (CSW) - Formation and Characterization of Si Quantum Dots with Ge Core for Electroluminescent Devices
摘要: We report on a distributed circuit model for multi-color light-actuated optoelectrowetting devices. The model takes into consideration the large variation of absorption coefficient (15×) of photoconductors in the visible spectrum and the nonuniform distribution of photogenerated carriers. With the help of this model, we designed opto-electrowetting devices with optimum thickness of photoconductors. This leads to significant improvement in performance compared with prior reports, including 200× lower optical power, 5× lower voltage, and 20× faster droplet moving speed. This enables the use of commercial projectors to create on-demand “virtual” electrodes for large-scale parallel manipulation of droplets. We have achieved simultaneous manipulation of 96-droplet array. Finally, we have demonstrated parallel on chip detection of Herpes Simplex Virus Type 1 within 45 min using a real-time isothermal polymerase chain reaction assay.
关键词: electrowetting,polymerase chain reaction (PCR),optoelectrowetting,light-actuated digital microfluidics,Droplet microfluidics
更新于2025-09-23 15:19:57
-
Colorimetric Polymerase Chain Reaction Enabled by a Fast Light-Activated Substrate Chromogenic Detection Platform
摘要: Miniaturization of nucleic acid tests (NATs) into portable, inexpensive detection platforms may aid disease diagnosis in point-of-care (POC) settings. Colorimetric signals are ideal readouts for portable NATs, and it remains of high demand to develop color readouts that are simple, quantitative and versatile. Thus motivated, we report a Fast Light-Activated Substrate cHromogenic polymerase chain reaction (FLASH PCR) that uses DNA intercalating dyes (DIDs) to enable colorimetric nucleic acid detection and quantification. The FLASH system is established on our finding that DID-DNA intercalation can promote the rapid photooxidation of chromogenic substrates through light-induced production of singlet oxygen. Using this principle, we have successfully converted DID-based fluorescent PCR assays into colorimetric FLASH PCR. To demonstrate the practical applicability of FLASH PCR to POC diagnosis, we also fabricated two readout platforms, including a portable electronic FLASH reader and a paper-based FLASH strip. Using the FLASH reader, we were able to detect as low as 60 copies of DNA standards, a limit of detection (LOD) comparable with commercial quantitative PCR. The FLASH strip further enables the reader-free detection of PCR amplicons by converting the colorimetric signal into the visual measurement of distance as a readout. Finally, the practical applicability of the FLASH PCR was demonstrated by the detection and/or quantification of nucleic acid markers in diverse clinical and biological samples.
关键词: FLASH,Singlet Oxygen,Photooxidation,DNA Intercalating Dyes,Colorimetric,Nucleic Acid Tests,Paper-based Strip,Point-of-Care,Portable Electronic Reader,Polymerase Chain Reaction
更新于2025-09-19 17:13:59
-
[IEEE 2019 International Conference on Electromechanical and Energy Systems (SIELMEN) - Craiova, Romania (2019.10.9-2019.10.11)] 2019 International Conference on Electromechanical and Energy Systems (SIELMEN) - Flexible Polynomial Mathematical Model of a Photovoltaic Power Plant
摘要: We report on a distributed circuit model for multi-color light-actuated optoelectrowetting devices. The model takes into consideration the large variation of absorption coefficient (15×) of photoconductors in the visible spectrum and the nonuniform distribution of photogenerated carriers. With the help of this model, we designed opto-electrowetting devices with optimum thickness of photoconductors. This leads to significant improvement in performance compared with prior reports, including 200× lower optical power, 5× lower voltage, and 20× faster droplet moving speed. This enables the use of commercial projectors to create on-demand “virtual” electrodes for large-scale parallel manipulation of droplets. We have achieved simultaneous manipulation of 96-droplet array. Finally, we have demonstrated parallel on chip detection of Herpes Simplex Virus Type 1 within 45 min using a real-time isothermal polymerase chain reaction assay.
关键词: light-actuated digital microfluidics,electrowetting,polymerase chain reaction (PCR),Droplet microfluidics,optoelectrowetting
更新于2025-09-16 10:30:52
-
Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction
摘要: Surfaces with gold dendritic nanoforests (Au DNFs) on Si chips demonstrate broadband-light absorption. This study is the first to utilize localized surface plasmons of Au DNFs/Si chips for polymerase chain reaction (PCR) applications. A convenient halogen lamp was used as the heating source to illuminate the Au DNFs/Si chip for PCR. A detection target of Salmonella spp. DNA fragments was reproduced in this plasmonic PCR chip system. By semi-quantitation in gel electrophoresis analysis, the plasmonic PCR with 30 cycles and a largely reduced processing time provided results comparable with those of a commercial PCR thermal cycler with 40 cycles in more than 1 h. In the presence of an Au DNFs/Si chip, the plasmonic PCR provides superior results in a short processing time.
关键词: polymerase chain reaction,plasmon,gold,Salmonella spp. DNA,dendritic,silicon
更新于2025-09-16 10:30:52
-
Detection of Salmonella from chicken rinsate with visible/near-infrared hyperspectral microscope imaging compared against RT-PCR
摘要: Salmonella is an organism of importance to the poultry industry with increasingly stringent government regulatory standards. Real-time polymerase chain reaction (RT-PCR) and plating procedures on nutrient enriched growth media have been the standard detection methods of Salmonella from broiler chicken carcasses for years. These methods are proven, but offer disadvantages in the amount of time or reoccurring sample cost. Here, we propose the use of a hyperspectral microscope imaging system (HMI) for comparison to standard detection methods. Broiler chicken carcasses were rinsed and plated on Salmonella selective agar. Colonies from plates were picked and RT-PCR was used as a confirmation test to verify plating results, while HMI was collected from the same colonies. Spectral signatures of cells were extracted between 450 – 800 nm from HMI collected with 100x objective. A quadratic discriminant analysis (QDA) was used to classify cells as either Salmonella positive or negative (n = 341). Spectra preprocessing minimized the influence of cellular shape on the spectra, increasing the initial classification accuracy of 81.8% to 98.5%, yielding a sensitivity of 1.0, and a specificity of 0.963. Results showed the potential as an initial investigation of HMI as a microbial confirmation tool, compared to RT-PCR.
关键词: Polymerase chain reaction,Salmonella,Food Safety,Hyperspectral microscope,Rapid detection
更新于2025-09-10 09:29:36