- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Theoretical model and experimental analysis of non-uniform material removal during full-aperture polishing
摘要: Full-aperture polishing is a key process in the fabrication of large flat optical elements with a high-precision surface figure. Controlling of the surface figure, which is primarily dependent on the material removal distribution, during the polishing process is challenging. In this study, a novel model is proposed to calculate the material removal distribution and the resultant surface figure. The model determines the material removal amount of points on the workpiece by considering the kinematic parameters and pressure distribution along the sliding trajectory relative to the pad. Moreover, the pressure distribution during the polishing process is acquired from the mechanical and morphological characteristic of polishing pad. With this model, the final surface figures under several polishing conditions were simulated and were found to be in close agreement with the experimental results.
关键词: Full-aperture polishing,Surface figure,Pressure distribution,Material removal distribution
更新于2025-09-23 15:21:01
-
Numerical and Experimental Study of the Spatial Stress Distribution on the Cornea Surface During a Non-Contact Tonometry Examination
摘要: The determination of biomechanical properties of the cornea by a non-contact tonometry (NCT) examination requires a precise knowledge of the air puff generated in the device, which is applied to the cornea surface. In this study, a method is proposed to identify the resulting stress profile on the surface, which may be used to numerically solve an inverse problem to obtain the material properties. This method is based on an experimental characterization of the air puff created by the Corvis ST in combination with computational fluid dynamic (CFD) simulations, which are adjusted to the experimental data. The identified nozzle inlet pressure of approximately 25 kPa (188.5 mmHg) is then used for a numerical influence study of the interaction between the air puff and the cornea deformation. Therefore, eleven cornea deformation states based on measurements are implemented in the CFD model. A more realistic model is also analyzed by the geometrical reproduction of the human face, which is used for a further influence study. The outcomes showed a dependence between the cornea deformation and the pressure as well as the shear stress distribution. However, quantitatively, the shear stress component can be considered of minor importance being approximately one hundred times smaller than the pressure. The examination with consideration of the human face demonstrates that the pressure and shear stress distributions are not rotationally symmetric in measurements on real humans, which indicates the requirement to include more complex stress distributions on the eye. We present the detailed stress distribution on the cornea during a non-contact tonometry examination, which is made accessible for further investigations in the future by analytical nonlinear functions.
关键词: Corneal biomechanics,Non-contact tonometry,Shear force distribution,Air puff characterization,Computational fluid dynamics,Pressure distribution
更新于2025-09-04 15:30:14