修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

342 条数据
?? 中文(中国)
  • Effectiveness of phased array focused ultrasound and active infrared thermography methods as a nondestructive testing of Ni-WC coating adhesion

    摘要: The substrate/coating adhesion is a crucial parameter conditioning the quality of coating and its durability in service. For this reason, an inspection of the coating integrity, in particular, the presence of adhesion defects will be of great importance. The adhesion inspection is usually ensured by destructive methods, such as traction, interfacial indentation, four-point bending, testing scratch, etc. However, it is currently hampered by the absence of a satisfactory non-destructive method. Among the non-destructive testing technologies widely used in the industrial field, there are X-ray diffraction, ultrasonic inspection, and infrared thermography. In this paper, two methods are investigated: ultrasonic inspection, which becoming more efficient, especially with the emergence of phased array systems that allow to investigate different inspection angles and focusing depths, and the active infrared thermography. Experiments were performed on metallic coatings deposited on a mild steel substrate. Coatings were containing artificial defects (flat bottom holes with different diameters) at the interface and others were exempts of defects. Longitudinal waves with specific delay laws were generated through a phased array contact transducer (5 MHz of central frequency). Experimental results show that the ultrasonic method allows detecting and sizing defects with a diameter of 1 mm located in thick coatings.

    关键词: Substrate/coating adhesion,phased array,defects,detection,nondestructive testing,coating

    更新于2025-09-23 15:22:29

  • <i>β</i> -Ga <sub/>2</sub> O <sub/>3</sub> thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy

    摘要: Monoclinic gallium oxide (Ga2O3) has been grown on (0001) sapphire (Al2O3) substrate by plasma-assisted molecular beam epitaxy (PA-MBE). The epitaxial relationship has been confirmed to be [010](ˉ201)β-Ga2O3||[1ˉ100](0001)Al2O3 via in-situ reflection high energy electron diffraction (RHEED) monitoring and ex-situ X-ray diffraction (XRD) measurement. Crystalline quality is improved and surface becomes flatter with increasing growth temperature, with a best full width at half maximum (FWHM) of XRD ω-rocking curve of (ˉ201) plane and root mean square (RMS) roughness of 0.68° and 2.04 nm for the sample grown at 730 °C, respectively. Room temperature cathodoluminescence measurement shows an emission at ~417 nm, which is most likely originated from recombination of donor–acceptor pair (DAP).

    关键词: CL measurement,β-Ga2O3,sapphire substrate,PA-MBE,crystalline quality

    更新于2025-09-23 15:22:29

  • Different Isolation Processes for Free-Standing GaN p-n Power Diode with Ultra-High Current Injection

    摘要: In this article, we report on the fabrication and high performance of power p-n diodes grown on free-standing (FS) GaN substrate. The key technique to enhance the high breakdown voltage and suppress the surface leakage current is the isolation process. The mesa-structure diode is generally formed by utilizing the inductively coupled plasma reactive ion etching (ICP-RIE); however, it always induces high surface damages and thus causes a high leakage current. In this study, we propose a planar structure by employing the oxygen ion implantation to frame the isolation region. By following the crucial process, the fabricated mesa- and planar-type diodes exhibit the turn-on voltages of 3.5 and 3.7 V, specific on-resistance (RONA) of 0.42 and 0.46 mΩ-cm2, and breakdown voltage (VB) of 2640 and 2880 V, respectively. The corresponding Baliga’s figures of merit (BFOM, i.e., VB2/RONA) are 16.6 and 18 GW/cm2, respectively. The BFOM of 18 GW/cm2 is the highest reported value for FS-GaN diode. From the temperature dependent measurements, the planar-type diode also shows the better leakage current and thermal stability than the mesa-type diode.

    关键词: leakage current,Baliga’s figure of merit,breakdown voltage,planar diode,implantation,GaN substrate

    更新于2025-09-23 15:22:29

  • Research on Image Smoothing Diffusion Model with Gradient and Curvature Features

    摘要: In this paper, two image smoothing models are proposed for the visual inspection of high-density flexible IC package substrates with strict requirements on line-width and line distance which are applied to the de-noising of high-density flexible IC package substrate images. First of all, the two models proposed in this paper combines the level set curvature feature of the image with gradient threshold, using more abundant second-order differential information as the detection factor to remove noise in image. Secondly, theoretical analysis shows that the de-noised image obtained by the two models proposed can retain more detailed texture information and edge information of the original image. What is more, the experimental analysis shows that the proposed models have the highest structural similarity and peak signal-to-noise ratio, and have a relatively high edge-preserving index and the lowest mean squared error compared with other models. In particular, the de-noised image through Model 1 has the highest structural similarity and peak signal to noise ratio, as well as the lowest mean squared error. The de-noised image through Model 2 has a relatively high edge retention index. The methods proposed in this paper can effectively remove the noise of the image of the high-density flexible IC package substrate, and can retain the original details and edges information of the image.

    关键词: Image de-noising,Flexible integrated circuit substrate image,Gradient,Curvature

    更新于2025-09-23 15:22:29

  • [IEEE 2018 IEEE International Conference on Semiconductor Electronics (ICSE) - Kuala Lumpur (2018.8.15-2018.8.17)] 2018 IEEE International Conference on Semiconductor Electronics (ICSE) - Challenges in Developing Thin Profile, Smaller Flip Chip Bump Pitch FCBGA Packaging

    摘要: The influence of substrate copper density distribution, substrate bump coplanarity, stiffener attach process, and substrate clamping by magnetic boat during die attach were evaluated. The substrate warpage behavior throughout the package assembly process was characterized using shadow moiré. Balanced substrate copper density distribution, pre-stiffener substrate before flip chip bump reflow, and substrate clamping during reflow reduced flip chip solder bridging fall-out. The decrease in solder bridging was due to the lower substrate warpage seen during die attach. In particular, solder bridging fall-out was well-correlated to die attach area warpage. Substrate with and without clamping during reflow has met the package reliability requirement.

    关键词: Substrate Warpage,FCBGA,Smaller Pitch,Flip Chip Bump Solder Bridging

    更新于2025-09-23 15:22:29

  • Formation of Polymer Wall Structure on Plastic Substrate by Transfer Method of Fluororesin for Flexible Liquid Crystal Displays

    摘要: In this paper, we examined the transfer method of fluororesin as the novel formation method of polymer wall in order to realize the lattice-shaped polymer walls without patterned light irradiation using photomask. We clarified that the transfer method was effective for formation of polymer wall structure on flexible substrate.

    关键词: silicone elastomer,phase separation,fluororesin,plastic substrate,polymer wall

    更新于2025-09-23 15:22:29

  • Highly Controllable Lasing Actions in Lead Halide Perovskite-Si <sub/>3</sub> N <sub/>4</sub> Hybrid Micro-Resonators

    摘要: Lead halide perovskite (MAPbX3) nanosheets are promising materials for optoelectronic devices. However, as the as-grown perovskite nanosheets typically have random sizes, positions, and alignments, their device performances are hard to be controlled and repeated, significantly hindering the practical applications in nanophotonics. Herein, a novel approach to realize highly controllable lasing actions in MAPbX3 nanosheets is demonstrated. By hybridizing the perovskite with an Si3N4 wafer, it is shown that the cavity shape and the internal lasing actions are precisely controllable via the patterns in Si3N4 wafer, which is pre-defined with mature CMOS technique and will not spoil the exceptional gain of perovskite nanosheet. Consequently, whispering gallery mode (WGM) micro-lasers with well-controlled mode numbers, mode spacing, repeatability, directionalities, and even internal angular momentum are experimentally realized. In addition, by constructing coupled micro-structures, the proximity effects between WGM lasers are also explored. This research provides a substrate-control mechanism to precisely define and control MAPbX3 perovskite micro-lasers.

    关键词: perovskite lasers,substrate control,micro-cavities

    更新于2025-09-23 15:22:29

  • Detection of the conformational changes of <i>Discosoma</i> red fluorescent proteins adhered on silver nanoparticles-based nanocomposites <i>via</i> surface-enhanced Raman scattering

    摘要: Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Regardless the targeted application, the current strategies on revealing the relationship between protein structure and function lead to exposure and interaction of proteins with non-biological organic and inorganic solid surfaces. Proper description of the underlying mechanisms will certainly unveil the fundamental protein-adsorption problem and add value to the effort of record and quantification of the conformational changes of the protein native state when interacting with solid surfaces. To that end the application of physics-based diagnostic methods is suitable and highly demanded. Raman spectroscopy appears the most frequently used method for the study of biomolecule recognition, and ultra-sensitive analysis, down to a single molecule. However, to tackle the sensitivity limitations of Raman spectroscopy imposed by the small Raman cross sections, the biological systems should be coupled with metallic nanostructures. The scattering efficiency can be thus increased by several orders of magnitude due to the activation of localized surface plasmon resonance (LSPR) that induces strong enhancement of the electromagnetic (EM) field in the vicinity of the metallic surface. This enables to largely extend the application of Raman spectroscopy in molecular spectroscopy, biomolecule recognition, and ultra-sensitive analysis, down to a single molecule. Besides the sensing properties, the strong EM enhancement can be exploited to probe protein conformational changes under photoexcitation, including real-time monitoring. Therefore, since its discovery in the late 70s, the Surface-Enhanced Raman Scattering (SERS) has proven to be a very powerful and reliable analytical tool for chemo- and bio-sensing, due to the strong enhancement of the vibrational signatures of analytes in different chemical environments. In this context, a lot of resources and time have been employed in the effort to develop plasmonic substrates based on metallic nanostructures aiming at a further increase of the EM enhancement for the realization of noninvasive, highly-sensitive, and large-scale optical sensors. A large variety of metallic nanostructure morphologies and arrangements (nanosphere, nanotriangles, nanodisks, nanorods, nanocubes, etc.) and different coupling geometries (dimers, trimers, arrays, etc.) have been developed up to date for SERS platforms. However, their conversion to macroscopic plasmonic substrates relies generally on the NPs volunteer arrangement on dielectric surfaces (mainly through applying chemical methods), thus often resulting in non-uniform distribution on large areas, without a well-defined control of the spacing between the metallic nanostructures and the probed molecules, high point-to-point variability, scarce reproducibility and stability under irradiation conditions (due to photothermal and photodegradation processes). To overcome the limitations in producing solid SERS substrates various physical approaches, like thermal evaporation, combined nanoimprint lithography-shadow evaporation, gas aggregation source (GAS), pulsed laser deposition (PLD), low-energy ion beam synthesis (LE-IBS), and plasma-based deposition processes, have been proposed in the literature. It is generally acknowledged that the silver nanoparticles (AgNPs) realize the best nanoscale antenna in the visible range for amplifying local electronic and vibrational signals, thus providing unique molecular information in the optical far-field regime. Indeed, compared to gold nanoparticles, the AgNPs offer the advantage of stronger plasmonic enhancement because of lower interference between intraband and interband electronic transitions. Moreover, the use of AgNPs covers another aspect of the relationship between protein structure and function which concerns the biological activity of the AgNPs. Because of their antimicrobial properties, the AgNPs have the potential to impact human health and environment. The biological activity of AgNPs goes both ways, through the activity of ionic silver (Ag+) and through direct contact with the AgNPs resulting in protein denaturation at different cell locations; specifically sensible are those enzymes of the respiratory chain and transport channels. Therefore, there exists a recognized need to address the relationship between protein structure and function from two distinctly different vantage points: (i) quantification of the conformational changes of proteins by using the antenna effect of AgNPs and (ii) analysis of the conformational changes of proteins induced by the AgNPs extreme chemical and biological activities. The intent of this work is to bring additional insight into the mechanisms of adsorption of proteins on solid surfaces through quantification of the conformational changes of proteins adhered on AgNPs-based nanocomposites via SERS. We focus on the wild-type Discosoma recombinant red fluorescent protein (DsRed), belonging to the family of naturally fluorescent proteins (FPs). The strong interest toward the FP family originates from their application in molecular biology as reporters of gene expression, as noninvasive markers in molecular biology and other singular events of cell activity. Potential use of the FPs extends toward therapeutics, tissue regeneration, bioelectronics and protein engineering. The most widely characterized member of this family is the green fluorescent protein (GFP). The lately cloned from reef coral Discosoma sp. DsRed protein possesses the longest yet reported, for a wild-type spontaneously fluorescent protein, excitation and emission maxima at 558 nm and 583 nm, respectively. Owing to its high fluorescence yield the red fluorescent DsRed protein has become important both as a model for understanding fluorescent proteins and as a tool for biomedical research. The DsRed protein and its engineered derivatives have found broad use in cell and molecular biology including fluorescence microscopy as a marker, fluorescence correlation spectroscopy (FCS) and fluorescence activated cell sorting (FACS). Recently, the DsRed was found suitable for rational design of ultra-stable and reversible photoswitches for super-resolution imaging. Moreover, it has been hypothesized that FPs from reef-building corals operate as part of an adaptive mechanism to optically interact and to regulate the symbiotic relationship between corals and photosynthetic algae. Structural rearrangements near the chromophore influence the maturation speed and brightness of the DsRed variants. It is therefore essential to examine the conformational transitions that affect the protein’s ability to transfer optical excitation energy. Studies of the conformational changes of DsRed protein have been reported in the literature but the DsRed Raman fingerprints were investigated only by recurring to chemically synthesized model chromophores. However, the later differ from the wild-type DsRed protein for the absence of the α-helix and β-sheets that naturally surround the chromophore and for the different extensions of the conjugated π-system. The choice of chemically synthesized model chromophores is explained by the complications brought by the presence of immature green species in the solution created as a photoproduct of the red ones, thus often resulting in an unclear or incomplete band assignment. The novelty of this work lays down the point that we work with the wild-type DsRed protein in its native state and not with DsRed model chromophore. All reported experimental studies in the literature were performed in solution. No information on the DsRed protein structural and conformational changes can be found when the DsRed protein is adhered on a solid substrate and irradiated by light. The lack of information on the above discussed issues motivated this study focusing on the investigation of the interaction of wild-type DsRed proteins with AgNPs-based plasmonic substrates. Our approach involves analysis of dehydrated DsRed protein layers in link with natural conditions during drying. To perform the SERS study on the conformational changes of DsRed proteins adhered on AgNPs-based nanocomposites we have elaborated, by plasma process, highly uniform and reproducible plasmonic substrates composed of a single layer of AgNPs coated by a silica layer. Focus was made on the possibility to well control, on a large scale, the AgNPs size distribution and interparticle distances. The resulting uniformity of hot-spot distribution guarantees the reproducibility and stability of this plasmonic sensor. Subsequently, we show how the enhanced EM field in the vicinity of the AgNPs could be employed to detect the presence and identify the conformational changes of proteins, adsorbed and adhered to the plasmonic substrate, during optical irradiation. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.

    关键词: plasmonic substrate,protein conformation,surface-enhanced Raman scattering,plasma deposition process,Discosoma red-fluorescent protein DsRed,Silver nanoparticles

    更新于2025-09-23 15:22:29

  • Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms

    摘要: In recent years, highly sensitive surface-enhanced Raman scattering (SERS) integrated with flexible substrates has drawn increasing attention for label-free detection. In this study, an invisible ink-inspired process was developed for the fabrication of plasmonic Au-based SERS substrates through an on-site redox strategy. Tannic acid (TNA), a common green reagent, was used not only for fabricating various SERS absorbents through a confinement reduction of a Au-TNA complex, but also for supplying an amphiphilic inorganic–organic surface structure for outstanding SERS enhancement at micromolar to nanomolar concentrations for a wide range of compounds. In addition to label-free sensing, this TNA/Au-based SERS substrate provides a versatile analysis platform for studies of chemical and biological reactions. A combination of TNA ink with different metal ions allows for a reliable procedure for the synthesis of a bimetallic AuAg SERS substrate that further enhances the SERS intensity of analyte molecules and extends the lower limit of detection.

    关键词: bimetallic AuAg SERS substrate,invisible ink,tannic acid,label-free detection,SERS,plasmonic Au-based SERS substrates,surface-enhanced Raman scattering

    更新于2025-09-23 15:21:21

  • A metamaterials-loaded quarter mode SIW microfluidic sensor for microliter liquid characterization

    摘要: In this paper, a two concentric complementary split-ring resonators (CSRRs) loaded quarter mode substrate integrated waveguide (QMSIW) is proposed as a compact microfluidic chemical sensor for liquid characterization, demonstrated by the measurement of distilled (DI) water and ethanol liquid mixtures. The proposed sensor can detect the liquid concentration from the resonance frequency shift caused by the liquid sample flowing inside the microfluidic channel engraved on polydimethylsiloxane (PDMS). Its electrical size is only ?0.25λg. The simulated resonant frequency shifts between DI water and 100% ethanol is 1196 MHz (from 2.620 GHz to 3.816 GHz), while less than 6 μL samples are used. The experimental results have validated the possibility of the application of the proposed microfluidic structure as a chemical sensor.

    关键词: micro?uidic sensor,Metamaterials,complementary split-ring resonator (CSRR),chemical sensor,substrate integrated waveguides (SIW)

    更新于2025-09-23 15:21:21