修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

114 条数据
?? 中文(中国)
  • Highly conductive two-dimensional electron gas at the interface of Al2O3/SrTiO3

    摘要: We create a two-dimensional electron gas at the Al2O3/SrTiO3/LaAlO3 heterostructures using pulsed laser deposition, which exhibits a decreasing sheet resistance with increasing growth temperatures of Al2O3 films. Structural characterizations of films are confirmed by cross-sectional transmission electron microscopy. Compared with these heterostructures with Al2O3 films deposited on pristine SrTiO3 and TiO2-terminated SrTiO3 substrates, the Al2O3/SrTiO3/LaAlO3 heterostructures are more conductive. X-ray photoelectron spectroscopy indicates the formation of oxygen vacancies at the SrTiO3 side of the interface, which results from the redox reactions by reducing SrTiO3 films. Furthermore, the existence of oxygen vacancies on the SrTiO3 side is verified by a blue-light emission.

    关键词: Al2O3/SrTiO3/LaAlO3 heterostructures,pulsed laser deposition,oxygen vacancies,two-dimensional electron gas,conductivity

    更新于2025-09-23 15:21:21

  • Oxygen concentration dependence of microstructure formed on Ni by backward pulsed laser deposition

    摘要: In the automotive industry, direct joining between resin and metal without additional material is expected due to a growing need for hybrid structures composed of resin and metal. Roughening the metal surface before joining can improve the adhesion with the resin, and forming a microstructure on the metal surface by backward pulsed laser deposition could be a useful method. In the present study, we investigated the dependence of microstructure on the oxygen concentration in the ambient gas during surface processing for controlling the morphology of the microstructure. In the experiments, the oxygen concentration in the ambient gas composed of nitrogen and oxygen was controlled under atmospheric pressure, and microstructure characteristics, such as the shape and hardness, were analyzed. As a result, it was demonstrated that the formation range of the microstructure was constant regardless of the oxygen concentration, whereas a rougher microstructure was formed at higher oxygen concentrations, and a dense, flat microstructure was formed at lower oxygen concentrations. These results implied that the oxidation between the nanoparticles in the laser-induced plume and the ambient gas affects the mobility of the nanoparticles on the metal surface, leading to a transmutation in the morphology of the microstructure. Finally, it was shown that it is important to reduce the surface mobility of nanoparticles, such as processing under high oxygen concentration, to form a microstructure that improves adhesion.

    关键词: Resin-metal joining,Backward pulsed laser deposition,Oxygen concentration,Microstructure,Nanosecond pulsed laser

    更新于2025-09-23 15:21:01

  • Expansion of laser-induced plume after the passage of a counter shock wave through a background gas

    摘要: Double-pulsed laser ablation with two targets and lasers in a background gas is a method to form nanoparticle complex. Effects of pulse delay between two lasers on plume expansion dynamics are discussed. The germanium and silicon targets were set parallel to each other and irradiated by two YAG lasers. The germanium target was irradiated followed by irradiation of the silicon target with delay time, td. We found that the expansion distance of delayed silicon plume is enhanced for 2 μs ≤ td ≤ 50 μs, compared to that when only the silicon target is irradiated. For td = 200 μs, the expansion distance of delayed silicon plume is similar to that when only the silicon target is irradiated. We discuss the expansion dynamics of the delayed silicon plume based on the effect of the density distribution induced by the primary germanium plume. Our results indicate that the effect of primary germanium plume remains up to about td = 50 μs, and it disappears by td = 200 μs.

    关键词: Shock wave,Pulsed laser ablation,Plume expansion,Pulsed laser deposition

    更新于2025-09-23 15:21:01

  • Effects of background gases and pressure in pulsed laser deposition of Al-doped ZnO

    摘要: Background gases (O2, He or Ar) with the pressure from ~ 10?3 Pa to 133.3 Pa are used in 355 nm laser deposition of Al-doped ZnO at room temperature. The effects of these gases and pressure on plasma formation are studied by optical emission spectroscopy (OES) and time of flight (TOF) measurement. The OES results show that the emission intensity of the species in O2 and Ar decrease slightly and then increase exponentially above ~ 5 Pa. The emission intensity in Ar is the highest, followed by emission in O2 whilst the emission in He is low and weakly depend on background gas pressure. TOF measurements indicate that the ion velocity decrease with increasing O2 and Ar pressure at about 5–10 Pa. The ion velocity is highest in He while the ion velocities in O2 and Ar are similar. Thin-film samples deposited in different gas at 2.6 Pa are amorphous, but those deposited at 133.3 Pa are crystalline and exhibit different morphologies and optical properties depending on type of gas. Samples deposited in O2 are highly transparent but those deposited in He and Ar contain nano and micron-sized structures with <50% transmittance. In addition, Zn crystallites are detected by X-ray diffraction.

    关键词: Pulsed laser deposition,Background gases,Aluminum-doped zinc oxide,Pressure,Laser produced plasma,Nanostructured films

    更新于2025-09-23 15:21:01

  • The plasmonic nanoparticles with controlled optical properties

    摘要: The gold and silver plasmon nanoparticles have been synthesized on the c-sapphire and p-silica substrates by the pulsed laser deposition method. It has been demonstrated that the variation of the thickness of as-grown gold and silver films permits producing the plasmon nanoparticles with different size and density. It provides the retuning of the frequency of surface plasmon resonance in wide spectral region.

    关键词: optical properties,plasmonic nanoparticles,pulsed laser deposition,surface plasmon resonance

    更新于2025-09-23 15:21:01

  • Development of Combinatorial Pulsed Laser Deposition for Expedited Device Optimization in CdTe/CdS Thin-Film Solar Cells

    摘要: A combinatorial pulsed laser deposition system was developed by integrating a computer controlled scanning sample stage in order to rapidly screen processing conditions relevant to CdTe/CdS thin-film solar cells. Using this system, the thickness of the CdTe absorber layer is varied across a single sample from 1.5 ??m to 0.75 ??m. The effects of thickness on CdTe grain morphology, crystal orientation, and cell efficiency were investigated with respect to different postprocessing conditions. It is shown that the thinner CdTe layer of 0.75 ??m obtained the best power conversion efficiency up to 5.3%. The results of this work shows the importance that CdTe grain size/morphology relative to CdTe thickness has on device performance and quantitatively exhibits what those values should be to obtain efficient thin-film CdTe/CdS solar cells fabricated with pulsed laser deposition. Further development of this combinatorial approach could enable high-throughput exploration and optimization of CdTe/CdS solar cells.

    关键词: combinatorial pulsed laser deposition,power conversion efficiency,grain morphology,CdTe/CdS thin-film solar cells,device optimization,crystal orientation

    更新于2025-09-23 15:21:01

  • Ultra-wide-bandgap (ScGa)2O3 alloy thin films and related sensitive and fast responding solar-blind photodetectors

    摘要: Although b-Ga2O3 is considered an excellent candidate for solar-blind photodetectors (PDs) owing to its direct bandgap (4.9 eV) and high stability, the cut-off wavelength often oversteps the DUV region, reducing the rejection ratio of the PD. Moreover, oxygen vacancies, which always appear in b-Ga2O3 ?lms, act as trap centers hindering carrier recombination and signi?cantly lowering response speed. To disentangle these issues, we propose in this work to modify b-Ga2O3 by incorporating Sc to form ternary (ScGa)2O3 alloys. Thanks to the wider bandgap of Sc2O3 (~5.7 eV) than Ga2O3 and stronger SceO bonding than GaeO, the (ScGa)2O3 alloy ?lms exhibit a wider bandgap (5.17 eV) with fewer oxygen vacancies compared with pure-Ga2O3, as expected, which eventually lead to an ultra-low dark current (0.08 pA at 10 V) and faster response times (trise: 41/149 ms; tdecay: 22/153 ms) of the alloy ?lm-based PDs. Furthermore, the peak and cut-off response wavelengths of the (ScGa)2O3 PD are blue shifted relative to the pure Ga2O3 PD, resulting in a higher rejection ratio (>500 vs ~317). The Sc-alloying strategy, taking advantage of wider bandgap of Sc2O3 and stronger SceO bonding to widen the bandgap while reducing the intrinsic carriers and oxygen vacancies in the (ScGa)2O3 alloy, is expected to be generally applicable to the design of other wide-bandgap oxide alloys for developing high-performance UV photodetectors with a low dark current and high response speed.

    关键词: Ga2O3 thin ?lms,Pulsed laser deposition,Solar-blind photodetectors,Sc-alloying

    更新于2025-09-23 15:21:01

  • Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology

    摘要: In the past decade, photo-detectors have been demonstrated to have very important applications in image sensing, optical communication, fire detection, environmental monitoring, space exploration, safety detection, and many other scientific research and industrial technology fields and are regarded as the key components of wearable devices. Compared to traditional fabrication approaches, pulsed-laser deposition (PLD)-grown materials for photo-detectors offer several merits. First, PLD is a clean physical vapor deposition approach. A stoichiometric amount of atoms can be transferred from the target to the substrate, avoiding complicated and potentially dangerous chemical reactions. Furthermore, the PLD process is carried out in a high-vacuum environment. Therefore, almost no contaminants, such as catalysts, precursors, surfactants and by-products, will be introduced. Also, the thickness of the films can be controlled by simply manipulating the energy and pulse number of the pulsed laser. Furthermore, the fabrication temperature is relatively low, which is available to deposit materials on various substrates, even flexible ones. Most importantly, PLD is a deposition technology with large area coverage, which can produce centimeter-scale thin films, the planar geometry of which has significant potential for compact device integration with modern semiconductor techniques. Consequently, this review introduces the recent advances on the materials, fabrication, and application of pulsed-laser deposition for a variety of high-performance photo-detectors from an overall perspective. Moreover, the challenges and future development trends are discussed.

    关键词: wearable devices,fabrication,optoelectronics,applications,photo-detectors,PLD,pulsed-laser deposition,high-performance,materials

    更新于2025-09-23 15:21:01

  • Dielectric Properties of Pulsed Laser Deposited Nanoscale CeNi5 Thin Films

    摘要: Dielectric properties of pulsed laser deposited, nanoscale CeNi5 alloy layers, on glass or SiO2 substrate are described using the complex dielectric function. The UV–Vis–NIR spectral behavior of this function is studied separately for its real part ε1 (the dielectric constant or dielectric permittivity), and for its imaginary part ε2 (the dielectric loss function). The layers were obtained from grinded CeNi5 bulk powder using short, modulated laser pulses. The absolute reflectance of the obtained nanoscale alloy layers was measured at the 632.8 nm wavelength of a liquid nitrogen cooled and stabilized He–Ne source. This value was further used to renormalize the relative differential reflectance spectroscopy measurements performed in the UV?Vis?NIR domain. The obtained absolute reflectance spectra were processed using the Kramers–Kr?nig formalism, so that the real and imaginary parts of the complex dielectric function could be computationally determined, also leading to the calculation of the electron loss functions –Im ε–1 and –Im(1 + ε)–1. The behavior of these functions near the spectral inflexion points was determined using appropriate theoretical considerations. The variation of the dielectric functions was explained, electron density of states and the shape of the energy bands were inferred. This study reveals the layer thickness and deposition substrate dependent optical and electrical properties of the produced nanoscale CeNi5 structures.

    关键词: dielectric constant,nanoscale CeNi5 thin films,dielectric loss function,pulsed laser deposition,electron energy band structures

    更新于2025-09-23 15:21:01

  • Vital role of Ar ambient pressure in controlled properties of nanocrystalline CdS thin films

    摘要: A report on the manipulation of structural, optical, and electrical properties of nanocrystalline CdS (ncCdS) thin films in the framework of varying Ar ambient pressure in pulsed laser deposition (PLD) is presented here. Increase in Ar ambient pressure results in reduction of crystallite size which in turns increases the structural imperfections and structural phase transformation of ncCdS thin films. The most significant observation here is the bleaching of multiphonon Raman modes (MRMs) particularly LO + 2E2, 2LO + 2E2, etc. in ncCdS thin films. An acute investigation on the reason of bleaching of LO + 2E2, 2LO + 2E2, etc. modes is carried out here and concluded that it is due to the fading of E2 mode with increasing Ar pressure as confirmed by low-frequency micro-Raman measurements. UV–visible absorption and photoluminescence spectroscopies are used to examine the optical properties like bandgap and possible electronic transitions in ncCdS thin films. Further, transport properties of ncCdS thin films are investigated using Hall measurement and I–V characteristics.

    关键词: electrical properties,optical properties,Ar ambient pressure,structural properties,pulsed laser deposition,nanocrystalline CdS thin films

    更新于2025-09-23 15:21:01