- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Compound Semiconductor Week (CSW) - Nara, Japan (2019.5.19-2019.5.23)] 2019 Compound Semiconductor Week (CSW) - Persistent resonance frequency shift of MoS <sub/>2</sub> mechanical resonator by laser irradiation
摘要: Robust classification becomes challenging when each class consists of multiple subclasses. Examples include multi-font optical character recognition and automated protein function prediction. In correlation-based nearest-neighbor classification, the maximin correlation approach (MCA) provides the worst-case optimal solution by minimizing the maximum misclassification risk through an iterative procedure. Despite the optimality, the original MCA has drawbacks that have limited its wide applicability in practice. That is, the MCA tends to be sensitive to outliers, cannot effectively handle nonlinearities in datasets, and suffers from having high computational complexity. To address these limitations, we propose an improved solution, named regularized MCA (R-MCA). We first reformulate MCA as a quadratically constrained linear programming (QCLP) problem, incorporate regularization by introducing slack variables in the primal problem of the QCLP, and derive the corresponding Lagrangian dual. The dual formulation enables us to apply the kernel trick to R-MCA, so that it can better handle nonlinearities. Our experimental results demonstrate that the regularization and kernelization make the proposed R-MCA more robust and accurate for various classification tasks than the original MCA. Furthermore, when the data size or dimensionality grows, R-MCA runs substantially faster by solving either the primal or dual (whichever has a smaller variable dimension) of the QCLP. The source code of the proposed R-MCA methodology is available at http://data.snu.ac.kr/rmca.
关键词: SOCP,correlation,kernel trick,QP,maximin,QCLP,Nearest neighbor,regularization
更新于2025-09-23 15:21:01
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - A Modular Source of Entangled Photon Pairs in Femtosecond-Laser Written Waveguide Circuits
摘要: Robust classi?cation becomes challenging when each class consists of multiple subclasses. Examples include multi-font optical character recognition and automated protein function prediction. In correlation-based nearest-neighbor classi?cation, the maximin correlation approach (MCA) provides the worst-case optimal solution by minimizing the maximum misclassi?cation risk through an iterative procedure. Despite the optimality, the original MCA has drawbacks that have limited its wide applicability in practice. That is, the MCA tends to be sensitive to outliers, cannot effectively handle nonlinearities in datasets, and suffers from having high computational complexity. To address these limitations, we propose an improved solution, named regularized MCA (R-MCA). We ?rst reformulate MCA as a quadratically constrained linear programming (QCLP) problem, incorporate regularization by introducing slack variables in the primal problem of the QCLP, and derive the corresponding Lagrangian dual. The dual formulation enables us to apply the kernel trick to R-MCA, so that it can better handle nonlinearities. Our experimental results demonstrate that the regularization and kernelization make the proposed R-MCA more robust and accurate for various classi?cation tasks than the original MCA. Furthermore, when the data size or dimensionality grows, R-MCA runs substantially faster by solving either the primal or dual (whichever has a smaller variable dimension) of the QCLP. The source code of the proposed R-MCA methodology is available at http://data.snu.ac.kr/rmca.
关键词: Nearest neighbor,kernel trick,regularization,correlation,SOCP,QCLP,maximin,QP
更新于2025-09-16 10:30:52